Авторизация:
Логин:
Пароль:
  


АНОНС
Всё для будущих инженеров: сотрудничество "Уралмашзавода" и УГГУ
Уралмашзавод продолжает сотрудничество с одним из ведущих вузов региона – Уральским государственным горным университетом. При поддержке Газпромбанка и Уралмашзавода в УГГУ были...
ИТОГИ ТРЕТЬЕГО НАЦИОНАЛЬНОГО ГОРНОПРОМЫШЛЕННОГО ФОРУМА
НП "Горнопромышленники России" подвело итоги Третьего Национального горнопромышленного форума, который состостоялся 8 ноября 2017 года в Конгресс-центре Торгово-промышленной палаты Российской...
ГДЕ ПРОИЗВОДСТВО, ТАМ И НАУКА
На Ставровском карьере по добыче щебня, расположенном в Калужской области, планируется организовать работу научно-исследовательских коллективов. Руководство карьера стремится предложить им...




ОБЗОР
СОВЕРШЕНСТВОВАНИЕ ДЕЯТЕЛЬНОСТИ МЕТАЛЛУРГИЧЕСКОГО ПРЕДПРИЯТИЯ В УСЛОВИЯХ КОНКУРЕНЦИИ
Рассмотрены проблемы развития российских металлургических предприятий, а также состояние сталелитейной промышленности в мире. Отмечается, что в условиях рынка и жесткой конкуренции...
МИРОВЫЕ ТЕНДЕНЦИИ К ПЕРЕХОДУ НА СЖИЖЕННЫЙ ГАЗ
Показано состояние в мире с производством и потреблением сжиженного газа в настоящее время. Приведена динамика изменения производства его объемов за последние годы. Перечислены...

ПОДРОБНАЯ ИНФОРМАЦИЯ

 

МЕТОДИКА ОЦЕНКИ ВЛИЯНИЯ СКОРОСТИ НАГРЕВА НА ИНТЕНСИВНОСТЬ АКУСТИЧЕСКОЙ ЭМИССИИ ПРИ ИССЛЕДОВАНИИ ТЕРМИЧЕСКИ СТИМУЛИРОВАННЫХ РАЗРУШЕНИЙ ГОРНЫХ ПОРОД



Предложена и обоснована оригинальная методика приблизительной количественной оценки степени влияния скорости нагрева на интенсивность ТАЭ. Методика позволяет количественно оценить степень влияния в процессе одного эксперимента за счет использования неравномерного ступенчатого характера нагрева (подвода тепловой мощности). За время ступеньки (скачка) мощности нагрева его скорость увеличивается в несколько раз, а температура образца не успевает существенно возрасти. Это позволяет пренебречь влиянием температуры на интенсивность ТАЭ на этапе ступеньки. Исходя из мультипликативной модели зависимости интенсивности ТАЭ от температуры и скорости нагрева, дается обоснование методики и вывод формулы расчета оценки. На примере экспериментов с образцами мрамора и гранита показан алгоритм оценки степени влияния скорости нагрева на интенсивность ТАЭ. Далее степень влияния определена для широкого спектра пород с учетом дополнительного параметра — температуры образца при ступеньке. Отмечено, что скорость нагрева производит модуляцию кривой интенсивности ТАЭ не только на этапе ступеньки. Для подтверждения причинно-следственной связи скачков скорости нагрева и интенсивности ТАЭ, а также выявления факта модуляции произведена оценка корреляции временных зависимостей в скользящем окне. Показано, что наблюдается высокий уровень корреляции с устойчивым сдвигом, который выделяется также и вне ступеньки.

Работа выполнена в рамках гос. задания «Физика переходных и триггерных процессов в сейсмичности: лабораторное моделирование, полевые наблюдения, петрофизический анализ», № гос. регистрации 0144-2014-0096.


Номер: 5
Год: 2018
УДК: 550.83+620.179
DOI: 10.25018/0236-1493-2018-5-0-5-25
Авторы: Казначеев П. А., Майбук З.-Ю. Я., Пономарев А. В.

Информация об авторах:
Казначеев Павел Александрович — кандидат технических наук,
научный сотрудник, e-mail: p_a_k@mail.ru,
Майбук Зиновий-Юрий Ярославович — старший научный сотрудник,
Пономарев Александр Вениаминович — доктор физико-математических наук,
зав. лабораторией,
Институт физики Земли им. О.Ю. Шмидта Российской академии наук.

Ключевые слова:
Горные породы, термостимулированные разрушения горных пород, термоакустическая эмиссия, микротрещины, скорость нагрева, лабораторное исследование.

Библиографический список:
1. Васин Р. Н., Никитин А. Н., Локаичек Т., Рудаев В. Акустическая эмиссия квазиизотропных образцов горных пород, инициированная температурными градиентами // Физика Земли. — 2006. — № 10. — С. 26—35.

2. Винников В. А., Кириченко И. В., Шкуратник В. Л. Моделирование термоэмиссионных эффектов памяти в неоднородных горных породах // Горный информационно-аналитический бюллетень. — 2008. — № 5. — С. 81—88.

3. Винников В. А., Шкуратник В. Л. О теоретической модели термоэмиссионного эффекта памяти в горных породах // Прикладная механика и теоретическая физика. — 2008. — Т. 49. — № 2. — С. 301—305.

4. Винников В. А., Вознесенский А. С., Устинов К. Б., Шкуратник В. Л. Теоретические модели акустической эмиссии в горных породах при различных режимах их нагревания // Прикладная механика и теоретическая физика. — 2010. — Т. 51. — № 1. — С. 100—105.

5. Дещеревский А. В., Сидорин А. Я. Периодограммы наложенных эпох при поиске скрытых ритмов в экспериментальных рядах // Сейсмические приборы. — 2011. — Т. 47. — № 2. — С. 21—43.

6. Дещеревский А. В., Журавлев В. И., Никольский А. Н., Сидорин А. Я. Программный пакет ABD — универсальный инструмент для анализа данных режимных наблюдений // Наука и технологические разработки. — 2016. — Т. 95. — № 3. — С. 35—48. DOI: 10.21455/std2016.4-6.

7. Измайлов Д. Ю. Виртуальная измерительная лаборатория PowerGraph // ПиКАД. — 2007. — № 3. — С. 42—47.

8. Казначеев П. А., Майбук З.-Ю. Я., Пономарев А. В., Смирнов В. Б., Бондаренко Н. Б., Матвеев М. А., Арора К. Исследование изменения петрофизических свойств гранитов различного происхождения при высокотемпературном воздействии / Современная тектонофизика. Методы и результаты. Материалы пятой молодежной тектонофизической школы-семинара. — М.: ИФЗ, 2017. — С. 247—249.

9. Казначеев П. А., Майбук З.-Ю. Я., Пономарев А. В., Смирнов В. Б., Бондаренко Н. Б. Лабораторное исследование термостимулированных разрушений горных пород // Триггерные эффекты в геосистемах (Москва, 6—9 июня 2017 г.): материалы IV Всероссийской конференции с международным участием / Под ред. В. В. Адушкина, Г. Г. Кочаряна. ИДГ РАН. — М.: ГЕОС, 2017. — С. 163—171.

10. Любушин А. А. Связь полей низкочастотных сейсмических шумов Японии и Калифорнии // Физика Земли. — 2016. — № 6. — С. 28—38.

11. Никитин А. Н., Васин Р. Н., Родкин М. В. Возможное влияние полиморфных переходов в минералах (на примере кварца) на сейсмотектонические процессы в литосфере // Физика Земли. — 2009. — № 4. — С. 67—75.


12. Ржевский В. В., Ямщиков В. С., Шкуратник В. Л., Фарафонов В. М., Лыков К. Г. Термо-

эмиссионные эффекты памяти горных пород // Доклады АН СССР. — 1985. — Т. 283. — № 4. — С. 843—845.

13. Система A-Line 32D. Сайт о системе регистрации акустической эмиссии и программе A-Line 32D [Электронный ресурс] // ООО «Интерюнис». — Электрон. дан. — 2017. — URL: https://www.interunis.ru/ru/produkcziya-a-line-32d.html. — Дата обращения: 28.12.2017.

14. Соболев Г. А., Пономарев А. В., Никитин А. Н., Балагуров А. М., Васин Р. Н. Исследование динамики полиморфного α-β—перехода в кварците методами нейтронной дифрактометрии и акустической эмиссии // Физика Земли. — 2004. — № 10. — С. 5—15.

15. Фейзуллаев А. А., Исмайлова Г. Г., Бабазаде А. Н. Особенности изменения пластовых температур в пределах Абшерон-Прибалханской зоны поднятий в связи с процессами нефте-

газообразования // Горные науки и технологии. — 2017. — № 2. — С. 3—10. DOI:10.17073/2500-0632-2017-2-3-8.

16. Шкуратник В. Л., Новиков Е. А. Влияние механического нагружения каменной соли на параметры термостимулированной акустической эмиссии // Прикладная механика и теоретическая физика. — 2015. — Т. 56. — № 3. — С. 164—172.

17. Шкуратник В. Л., Вознесенский А. С., Винников В. А. Термостимулированная акустическая эмиссия в геоматериалах. — М.: изд-во «Горная книга», 2015.

18. Шкуратник В. Л., Новиков Е. А. Термостимулированная акустическая эмиссия горных пород как перспективный инструмент решения задач геоконтроля // Горный журнал. — 2017. — № 6. — С. 21—27.

19. Шкуратник В. Л., Новиков Е. А., Ошкин Р. О. Экспериментальное исследование термостимулированной акустической эмиссии образцов горных пород различных генотипов при одноосном нагружении // Физико-технические проблемы разработки полезных ископаемых. — 2014. — № 2. — С. 69—76.

20. Benson P. M., Vinciguerra S., Meredith P. G., Young R. P. Laboratory simulation of volcano seismicity // Science. — 2008. — Vol. 322. — Pp. 249—252. DOI: 10.1126/science.1161927.

21. Browning J., Meredith P., Gudmundsson A. Cooling-dominated cracking in thermally stressed volcanic rocks // Geophys. Res. Lett. — 2016. — Vol. 43. — Iss. 16. — Pp. 8417—8425.

22. Burlini L., Vinciguerra S., Toro G. D., Meredith P., Burg J.-P. Seismicity preceding volcanic eruptions: New experimental insights // Geology. — 2007. — Vol. 35. — No. 2. — Pp. 183—186. DOI: 10.1130/G23195A.

23. Jones C., Keaney G., Meredith P. G., Murrell S. A. F. Acoustic emission and fluid permeability measurements on thermal cracked rocks // Phys. Chem. Earth. — 1997. — Vol. 22. — No. 1—2. — Pp. 13—17.

24. Lyubushin A. A. Analysis of canonical coherences in the problems of geophysical monitoring // Izvestiya, Physics of the Solid Earth. — 1998. — Vol. 34, No. 1. — Pp. 52—58.

25. Molaro J. L., Byrne S., Langer S. A. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown // Journal of Geophysical Research: Planets. — 2015. — Vol. 120. — Pp. 255—277. DOI: 10.1002/2014JE004729.

26. Nasseri M. H. B., Schubnel A., Benson P. M., Young R. P. Common evolution of mechanical and transport properties in thermally cracked westerly granite at elevated hydrostatic pressure //

Pure and Applied Geophysics. — 2009. — Vol. 166. — Pp. 927—948. DOI: 10.1007/s00024-009-0485-2.

27. Todd T. P. Effects of cracks on elastic properties of low porosity rocks / PhD thesis. — Massachusetts Institute of Technology, 1973.

28. Vinciguerra S., Trovato C., Meredith P. G., Benson P. M. Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts // International Journal of Rock Mechanics & Mining Sciences. — 2005. — Vol. 42. — Pp. 900—910. DOI: 10.1016/j.ijrmms.2005.05.022.

29. Yong C., Wang C.-Y. Thermally induced acoustic emission in Westerly granite // Geophys. Res. Lett. — 1980. — Vol. 7. — No. 12. — Pp. 1089—1092.


вернуться назад
Карта сайта