Авторизация:
Логин:
Пароль:
  


АНОНС
Всё для будущих инженеров: сотрудничество "Уралмашзавода" и УГГУ
Уралмашзавод продолжает сотрудничество с одним из ведущих вузов региона – Уральским государственным горным университетом. При поддержке Газпромбанка и Уралмашзавода в УГГУ были...
ИТОГИ ТРЕТЬЕГО НАЦИОНАЛЬНОГО ГОРНОПРОМЫШЛЕННОГО ФОРУМА
НП "Горнопромышленники России" подвело итоги Третьего Национального горнопромышленного форума, который состостоялся 8 ноября 2017 года в Конгресс-центре Торгово-промышленной палаты Российской...
ГДЕ ПРОИЗВОДСТВО, ТАМ И НАУКА
На Ставровском карьере по добыче щебня, расположенном в Калужской области, планируется организовать работу научно-исследовательских коллективов. Руководство карьера стремится предложить им...



ОБЗОР
СОВЕРШЕНСТВОВАНИЕ ДЕЯТЕЛЬНОСТИ МЕТАЛЛУРГИЧЕСКОГО ПРЕДПРИЯТИЯ В УСЛОВИЯХ КОНКУРЕНЦИИ
Рассмотрены проблемы развития российских металлургических предприятий, а также состояние сталелитейной промышленности в мире. Отмечается, что в условиях рынка и жесткой конкуренции...
МИРОВЫЕ ТЕНДЕНЦИИ К ПЕРЕХОДУ НА СЖИЖЕННЫЙ ГАЗ
Показано состояние в мире с производством и потреблением сжиженного газа в настоящее время. Приведена динамика изменения производства его объемов за последние годы. Перечислены...

ПОДРОБНАЯ ИНФОРМАЦИЯ

 

СИСТЕМНЫЙ ПОДХОД К ТЕХНОЛОГИИ ОЦЕНКИ МЕТАНОВОЙ ОПАСНОСТИ ПОДГОТОВИТЕЛЬНЫХ УЧАСТКОВ ШАХТ



Предлагаемый алгоритм моделирования режимов работы ВМП при проведении подготовительных выработок позволяет решать прямые и обратные задачи местного проветривания в шахтах и рудниках на стадии проектирования и в шахтных условиях. Следовательно, для каждой подготовительной выработки необходимо создавать математическую модель аэродинамического режима работы ВМП с использованием точных аппроксимаций аэродинамических характеристик конкретного вентилятора. Эту математическую модель дополняют аппроксимациями потребляемой мощности от производительности вентилятора. Следует отметить, что методика аппроксимации аэродинамических характеристик ВМП и зависимостей потребляемой мощности от производительности вентилятора позволяет получать необходимые аналитические зависимости на стадии заводских испытаний ВМП. Предлагаемый подход к разработке индивидуальных, субъективно уникальных аэродинамических математических моделей проветривания подготовительных выработок существенно повысит безопасность горных работ по газовому фактору.



Номер: 8
Год: 2018
УДК: 622.414.2
DOI: 10.25018/0236-1493-2018-8-0-54-64
Авторы: Сенкус Вал. В., Ермаков Н. А., Раджабова Л. Г.

Информация об авторах:
Сенкус Валентин Витаутасович — кандидат технических наук,
начальник горного отдела ООО «Проектгидроуголь-Н»,
e-mail: senkus@yandex.ru,
Ермаков Никита Анатольевич (1) — ведущий инженер,
Раджабова Любовь Геннадиевна (1) — главный специалист,
1) Филиал ООО «Сибнииуглеобогощение»,
г. Прокопьевск.

Ключевые слова:
Системный подход, технология, оценка, метановая опасность, подготовительный забой, угольная шахта.

Библиографический список:

1. Предупреждение газодинамических явлений в угольных шахтах: сборник документов. Серия 5. Вып. 2. — М.: ГУП «НТУ по безопасности Госгортехнадзора России», 2001. — 320 с.


2. Karacan C. O., Ruiz F. A., Cote M., Phipps S. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction // International Journal of Coal Geology. — 2011. — 86. — Pp. 121—156.


3. Heather N. Dougherty, C. Ozgen Karacan. A new methane control and prediction software suite for longwall mines // Computers & Geosciences. — 2011. — 37. — Pp. 1490—1500.


4. C. Özgen Karacan. Modeling and prediction of ventilation methane emissions of U.S. Longwall mines using supervised artificial neural networks // International Journal of Coal Geology. — 2008. — 73. — Pp. 371—387.


5. Clarkson C. R. Production data analysis of unconventional gas wells: Review of theory and best practices // International Journal of Coal Geology. — 2013. — 109—110. — Pp. 101—146.


6. Liu Y., Xia B., Liu X. A Novel Method of Orienting Hydraulic Fractures in Coal Mines and Its Mechanism of Intensified Conduction // Journal of Natural Gas Science & Engineering. — 2015. DOI: 10.1016/j.jngse.2015.08.054.


7. U.S. EPA, 2012. Global anthropogenic non-CO2 greenhouse gas emissions: 1990—2030. US Environmental Protection Agency.


8. Dazhao Song et al. Evaluation of coal seam hydraulic fracturing using the direct current method // International Journal of Rock Mechanics & Mining Sciences. 2015. — 78. — Pp. 230—239.


9. Kachurin N. M., Babovnikov A. L. Gassing during the break and transport of coal in a retreatlongwall // Development of new technologies and equipment for mine haulage and hoisting. — Budva. — 2005. — Pp. 245—249.


10. Яновская М. Ф. О скорости десорбции метана из разрушенного угля // Проблемы рудничной аэрологии: сборник статей. — М.: Госгортехиздат, 1959. — С. 32—37.


11. Siemek J., Rajtar J. Simulation of gas ouflow from porousfissured media // Arch. Mining. Sci. — 1989. — 34, no 1. — Pp. 119—128.


12. Васючков Ю. Ф. Диффузия метана в ископаемых углях // Химия твердого топлива. — 1976. — № 4. — С. 76—79.


вернуться назад
Карта сайта