:
:
:
  





-
...

 

һ



«». , , , , . , . . . , , , . , .


. ., . ., . .  «» // - . – 2019. – 8. – . 157–168. DOI: 10.25018/0236-1493-2019-08-0-157-168.



: 8
: 2019
ISBN: 0236-1493
: 622.83.551.252
DOI: 10.25018/0236-1493-2019-08-0-157-168
: . ., . ., . .

:
- . , ,
. . ,
1 , revine@inbox.ru,
- .
: .., e-mail: revine@inbox.ru.

:
, , , - , .

:

1. . ., . . // . — 2017. — . 223. — . 51—57.


2. Ridgeway G. The state of boosting // Computing Science and Statistics. 1999, Vol. 31. Pp. 172—181.


3. . . . — .: , 2004. — 180 .


4. Holt Charles C. Forecasting trends and seasonal by exponentially weighted averages // International Journal of Forecasting. January—March 2004. 20 (1): 5—10.


5. Friedman J. H. Greedy Function Approximation: a Gradient Boosting Machine. Technical Report. Dept. of Statistics, Stanford University, 1999.


6. Mason L., Baxter J., Bartlett P. L., Frean Marcus. Boosting Algorithms as Gradient Descent (PDF) / In S. A. Solla and T.K. Leen and K. Müller. Advances in Neural Information Processing Systems 12. MIT Press. 1999. pp. 512—518.


7. Brown R. G., Meyer R. F. The fundamental theorum of exponential smoothing. Oper. Res, 1961. Vol. 9. no 5.


8. Muller A., Guido S. Introduction to Machine Learning with Python: A Guide for Data Scientist. Moscow: O'Reilly Media, 2017. p. 392.


9. ., ., . Data Science Big Data. Python . — .: , 2017. — 336 .


10. Brown Robert Goodell Smoothing Forecasting and Prediction of Discrete Time Series. Englewood Cliffs, NJ: Prentice-Hall. 1963.


11. . . . — .: , 2003. — 416 .


12. . ., . . : . 2- ., . . — .: - , 2018. — 267 .


13. Box G., Jenkins G., Reinsel G., Ljung G. Time series analysis: forecasting and control. John Wiley & Sons, 2015.


14. Aravkin A., Burke J. V. , Ljung L., Lozano A., Pillonetto G. Generalized kalman smoothing: Modeling and algorithms. Survey to appear in Automatica, 2017.


15. Aravkin A., Abrami A., Kim Y. Time series using exponential smoothing cells. Stat ML, 2017.