This work focuses on the description of an economic system of the low-decayed peat raw materials selective excavation applied in the production of filtering material. The method of natural peat excavation provides progressive restoration of production area as influenced only rather small area of a peat bog in certain time. The method of peat raw materials excavation consists in use by means of the grapple fork with loading in the tractor semitrailer for transportation.
Peat deposits have a low density and low strength, are easily deformable system the loading that occurs conditionally, instant, slow highly elastic deformation, and flow deformation. The development of each of them depends mainly on the strength of the structure of peat, consisting of plant residues, forming the interlacement structures, and coagulation structures of disintegration products.
When the shift fork jaws of the grapple in the material under the action of horizontal compressive forces arise stress and deformation. The model allows to take into account the highly elastic component of the low-decayed peat is the three-element of the Zener rheological model of a linear viscoelastic body. Obtained on the basis of the Zener model linear viscoelastic body the expressions for the calculation of the conditionally instantaneous modulus of elasticity, modulus of delayed elasticity and viscosity allow a fairly accurate calculation of the mechanical characteristics in the field of highly elastic sample. These results are in good agreement with the experimental data of the research.
Compression process at peat raw materials excavation from a peat deposit must be exercised when external stress (power influence from the grapple fork) that exceeds the yield strength of the peat raw materials. The value of the external stress has to choose with regard to overcoming shear stress of the top layer of peat deposit, which guarantees a filling volume of grapple fork with a compaction factor of 1.3.


Peat raw material, selective excavation, grapple fork, Zener model, stress, compression deformation, modulus of elasticity, viscosity.

Issue number: 2
Year: 2016
UDK: 622.331: 622.271
Authors: Mikhaylov A. V., Taranov A. G.

About authors: Mikhaylov A.V., Doctor of Technical Sciences, Professor, e-mail:, Taranov A.G., Graduate Student, e-mail:, National Mineral Resource University «University of Mines», 199106, Saint-Petersburg, Russia.

REFERENCES: 1. Adamov A. A., Matveenko V. P., Trufanov N. A. Metody prikladnoy vyazkouprugosti(Methods of applied viscoelasticity) Ekaterinburg, UrO RAN, 2003, 412 p.
2. Aret V. A., Nikolaev B. L., Nikolaev L. K. Fiziko-mekhanicheskie svoystva syr’ya igotovoy produktsii (Physico-mechanical properties of raw materials and finished products), Saint-Petersburg, GIORD, 2009, 448 p.
3. Bazin E. T. Torf i torfyanye mestorozhdeniya: problemy izucheniya, orosheniya, dobychi, pererabotki, kompleksnogo ispol’zovaniya, resursosberezheniya i ekologii (Peat and peatlands: problems of studying, irrigation, production, processing, integrated use, resource saving and ecology), Saint-Petersburg, VNIITP, 1993, 123 p.
4. Lishtvan I. I. Khimiya tverdogo topliva. 2010, no 6, pp. 3–10.
5. Malkin A. Ya., Isaev A. I. Reologiya: kontseptsii, metody, prilozheniya (Rheology:concepts, methods, applications), Saint-Petersburg, Professiya, 2007, 580 p.
6. Mikhaylov A. V., Taranov A. G., Sinitskiy V. I. Innovatsionnye sistemy otvedeniya iochistki poverkhnostnykh stokov s urbanizirovannykh territoriy: materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii (Innovative discharge and treatment of surface flows from urbanized territories: International Scientific-Practical Conference Proceedings), Petrozavodsk, «Svoe izdatel’stvo», 2014, pp. 74–81.
7. Mikhaylov A. V., Taranov A. G. Innovatsii na transporte i v mashinostroenii: sborniktrudov III mezhdunarodnoy nauchno-prakticheskoy konferentsii. Tom II (Innovations in Transport and Machine Engineering: The 3rd International Scientific-Practical Conference Proceedings, vol. II), Saint-Petersburg, Natsional’nyy mineral’no-syr’evoy universitet «Gornyy», 2015, pp. 55–59.
8. Mironov V. A., Galkin N. N. Opredelenie fiziko-mekhanicheskikh svoystv gruntovpri proektirovanii osnovaniy zdaniy i sooruzheniy (Determination of physico-mechanical properties of soils in the design of foundations of buildings and structures), Tver, TvGTU, 2006, 43 p.
9. Magomedov G. O., Zhuravlev A. A., Shevyakova T. A., Plotnikova I. V. VestnikVGUIT. 2014, no 4, pp. 110–114.
10. Francesco Mainardi, Giorgio Spada. Creep, Relaxation and Viscosity Propertiesfor Basic Fractional Models in Rheology. The European Physical Journal, Special Topics, Vol. 193 (2011) pp.133–160.
11. Georg Bauer, Christian Friedrich, Carina Gillig, Fritz Vollrath, Thomas Speck,Chris Holland. Investigating the rheological properties of native plant latex. J. R. Soc. Interface, 2014, 11, 20130847; DOI: 10.1098/rsif.2013.0847.
12. Houanou K. A., Tchéhouali A., Foudjet A. E. Identification of Rheological Parameters of the linear Viscoelastic Model of two species of tropical woods (Tectona grandis Lf and Diospyros mespiliformis). Research Journal of Engineering Sciences. Vol. 1(5), November (2012), pp. 17–24.
13. Rao M. A. Rheology of Fluid, Semisolid, and Solid Foods: Principles and Applications. London: Springer New York Heidelberg Dordrecht, 2014, no XIII. P. 461.
14. Severino P. C. Marques, Guillermo J. Creus. Computational Viscoelasticity.Springer Briefs in Computational Mechanics 2012, XI, 124 p.
Subscribe for our dispatch