JUSTIFICATION OF THERMOMETRIC CONTROL METHODS OF SOLVENTS IN THE ROOF OF UNDERGROUND STORAGE IN SALT CAVERNS

The article reviewed the existing methods of nonsolvent level control in the process of building an underground cavern. Among those are geophysical method, sub-shoe method, level hole method, initial level method, manometric technique, stationary sensors method. Geothermal surveying method is the advanced one. The thermal change simulation in the cavern storage depending on depth and different types of nonsolvent (diesel, air) was performed by finite elements method. Temperature difference dependence on coordinate in case of different nonsolvents and at different distances between measuring points in cavern was calculated. Also the possibility of brine and nonsolvent (diesel, air) interface determination was demonstrated. For diesel nonsolvent the temperature difference at 2.50 m and 1.25 m distance in two points is 0.10 °C and 0.17 °K, for air 0.40 °K and 0.25 °K, respectively. Fiber-optic measurement system for temperature gradient data acquisition in depth of borehole can be recommended as an advanced one. The accuracy of measurements vary from 0.08 °K to 3 °K, the measurement resolution of the temperature difference with the mathematical processing can reach 0.02 °K which is sufficient for the reliable determination of the boundary position.

Keywords

Mining industry, mine, intensive development layer, capacity, technological scheme, optimum parameters, quality of coal.

Issue number: 7
Year: 2016
ISBN:
UDK: 622.323: 550.3
DOI:
Authors: Voznesenskiy E. A., Pustovoytova N. A.

About authors: Voznesenskiy E. A., Candidate of Technical Science, Deputy Head of Technical Diagnostics, e-mail: e.voznesenskiy@gazpromgeotech.ru, Pustovoytova N. A., Candidate of Technical Science, Head of Department of Technical Diagnostics, e-mail: n.pustovoitiva@gazpromgeotech.ru, «Gazprom geotechnology» LLC, 123290, Moscow, Russia.

REFERENCES: 1. Smirnov V. I. Stroitel’stvo podzemnykh gazoneftekhranilishch: Uchebnoe posobie dlya vuzov (Строительство подземных газонефтехранилищ, Higher educational aid), Moscow, Gazoyl press, 2000, 250 p.
2. Zharkov V. N. Vnutrennee stroenie Zemli i planet (Внутреннее строение Земли и планет), Moscow, Nauka, Glavnaya redaktsiya fiziko-matematicheskoy literatury. 1983, 416 p.
3. Babichev A. P., Babushkina N. A., Bratkovskiy A. M. Fizicheskie velichiny: Spravochnik. Pod red. I. S. Grigor’eva, E. Z. Meylikhova (Физические величины: Handbook. Grigor’ev I. S., Meylikhov E. Z. (Eds.)), Moscow, Energoatomizdat, 1232 p.
4. Nazintsev Yu. L., Panov V. V. Fazovyy sostav i teplofizicheskie kharakteristiki morskogo l’da (Фазовый состав и теплофизические характеристики морского льда), Saint-Petersburg, Gidrometeoizdat, 2000, 83 p.
5. Vargaftik N. B., Filippov L. P., Tarzimanov A. A., Totskiy E. E. Spravochnik po teploprovodnosti zhidkostey i gazov (Справочник по теплопроводности жидкостей и газов), Moscow, Energoatomizdat, 1990, 352 p.
6. Handbuch zur Erkundung des Untergrundes von Deponien und Altlasten. BGR, Bundesanstalt für Geowissenschaften und Rohstoffe Berlin; Heidelberg; New York; Barcelona; Budapest; Hong Kong; London; Mailand; Paris; Santa Clara; Singapur; Tokio: Springer, 1997. Bd. 3. Geophysik / Klaus Knödel et al. 1997. 1063 p.
7. Bücker C., Großwig S., Hurtig E., Rembe M., Stadt N. Prozessabläufe im Speicherbereich bei der Injektion von Flüssigkeiten in Bohrungen Messung und Simulation.DGMK/ÖGEW-Frühjahrstagung 2015, Fachbereich Aufsuchung und Gewinnung. Celle, 22./23. April 2015. DGMK-Tagungsbericht 2015-1.
8. Xiaoyi Bao and Liang Chen. Recent Progress in Distributed Fiber Optic Sensors.Sensors. 2012. 12. p. 8601–8639.
9. Raspredelennyy datchik temperatury DTS. Informatsionnyy material firmy Optical Path. http://opticalpath.ru/ (accessed: 10.07.2015).
10. Resheniya dlya neftegazovoy promyshlennosti. Informatsionnyy material firmy OOO «Sedatek». http://www.sedatec.org/ru/industry/863932/ (accessed: 10.07.2015).
Mining World Russia
Subscribe for our dispatch