The paper presents the research results on the disturbed state of pit walls at the experimental-industrial site of the Oleniy Ruchey open pit. In the subsurface area a fractured zone is generated where cavings occur in most cases. Thickness of this zone is chosen as a criterion for pit wall rock mass state under hard rocks conditions. The paper used the following methods: visual, television monitoring of boreholes, seismic profiling. The visual method has established thickness of the disintegrated rock zone on the surface of the bench’s slope. The borehole television monitoring method has managed to establish 3 zones of the rock mass: a zone of disintegrated rock, an area of disturbed state of rocks (3-6 fractures per meter), and an undisturbed zone (0-2 fractures per meter). The seismic tomography method was used to define the thickness of overburden rocks on the bench’s bottom. A typical scheme of mining-induced destruction of the pit wall rock mass was proposed on the basis of the research. The author also makes an attempt to determine the size of the potential caving in the pit wall area given. With the defined 3 m thickness of the fractured zone, the length of a possible rock caving along the front is approximately 14 m, and its volume about 100 m3. If the thickness of the fractured zone reduces to 1 m, length of the caving along the front is 4 m, and its volume reduces by more than an order up to 4 m3, which will reduce the risks of a technological regime violation in open mining.

The studies have been supported by the Russian Science Foundation within the priority area of fundamental research and exploration by separate research groups, Grant No. 141700751 (research manager – A. A. Kozyrev).


Geomechanics, geophysics, disturbed state, seismic tomography, open pit, pit wall, caving.

Issue number: 7
Year: 2016
UDK: 622.271.3
Authors: Kalyuzhnyy A. S.

About authors: Kalyuzhnyy A. S., Junior Researcher, e-mail:, Mining Institute of Kola Scientific Centre of Russian Academy of Sciences, 184209, Apatity, Russia.

REFERENCES: 1. Dowling J., Beale G., Bloom J. Designing a Large Scale Pit Slope Depressurization System at Bingham Canyon. International Mine Water Association Annual Conference. Reliable Mine Water Technology. 2013. Vol. I, pp. 119–125.
2. Tapia A., Contreras L.F., Jefferies M., Steffen О. Risk evaluation of slope failure at the Chuquicamata mine. Slope Stability 2007. Proceedings of 2007 International Symposium on Rock Slope Stability in Open Pit Mining and Civil Engineering (ed. Y Potvin). 2007. pp. 477–495.
3. Brummer R. K., Li H., Moss A., Casten T. The Transition from Open Pit To Underground Mining: An Unusual Slope Failure Mechanism at Palabora. Proceedings of International Symposium on Stability of Rock Slopes in OpenPit Mining and Civil Engineering, The South African Institute of Mining and Metallurgy. 2006. pp. 411–420.
4. Wines D. R., Lilly P. A. Measurement and analysis of rock mass discontinuity spacing and frequency in part of the Fimiston Open Pit operation in Kalgoorlie, Western Australia: a case study. International Journal of Rock Mechanics & Mining Sciences, 2002, Vol. 39, no 5. 2002. pp. 589 602.
5. Mel’nikov N. N., Kozyrev A. A., Reshetnyak S. P., Kaspar’yan E. V., Rybin V. V., Melik-Gaykazov I. V., Svinin V. S., Ryzhkov A. N. Trudy 8-go mezhdunarodnogo simpoziuma «Gornoe delo v Arktike». Pod red. N.N. Mel’nikova, S.P. Reshetnyaka. Apatity. 20–23 iyunya 2005 g. (Proceedings of the 8th International symposium «Mining in the Arctic», Melnikov N.N., Reshetnyak S.P. (Eds.), 20-23 June 2005), Saint-Petersburg, izd. «Tipografiya Ivan Fedorov», 2005, pp. 2–14.
6. Kozyrev A. A., Rybin V. V., Bilin A. L., Fokin V. A., Melik-Gaykazov I. V. Gornyy zhurnal. 2010, no 9, pp. 24–27.
7. Mel’nikov N. N., Fedorov S. G. Gornyy zhurnal. 2010, no 9, pp. 36–39.
8. Rybin V. V., Kalyuzhnyy A. S., Potapov D. A. Monitoring prirodnykh i tekhnogennykh protsessov pri vedenii gornykh rabot: doklady Vserossiyskoy nauchno-tekhnicheskoy konferentsii s mezhdunarodnym uchastiem 24–27 sentyabrya 2013 g. (Mining & Monitoring: natural and mining-induced processes, Proceedings of the International Conference 24–27 September, 2013), Apatity; Saint-Petersburg, 2013, pp. 180–187.
9. Rybin V. V., Potapov D. A. Problemy nedropol’zovaniya. 2014, no 1, pp. 44–52.
10. Kalyuzhnyy A. S. Geotekhnologiya i obogashchenie poleznykh iskopaemykh. Materialy VI Shkoly molodykh uchenykh. Apatity, 19–20 noyabrya 2014 g. (Geotechnology and mineral processing. Proceedings of the VI School of young scientists. Apatity, Russia, November 19–20, 2014), Apatity, UNTs RAN, 2015, pp. 41–45.
11. Shkuratnik V. L., Timofeev V. V., Ermolin A. A., Rybin V. V., Konstantinov K. N. Gornyy informatsionno-analiticheskiy byulleten’. 2009, no 2, pp. 76–84.
12. Sheriff R., Geldart L. Seysmorazvedka: V 2-kh t. Per. s angl. (Seismic prospecting: 2 volumes. English–Russian translation), Moscow, Mir, 1987, 448 p.
13. Panin V. I., Startsev Yu. A. Gornyy informatsionno-analiticheskiy byulleten’. 2011, no 9, pp. 223–230.
14. Kaspar’yan E. V., Rybin V. V., Startsev Yu. A. Vestnik Kol’skogo nauchnogo tsentra RAN. 2011, no 3(6), pp. 30–33.
15. Fokin V. A., Tarasov G. E., Togunov M. B., Danilkin A. A., Shitov Yu. A. Sovershenstvovanie tekhnologii burovzryvnykh rabot na predel’nom konture kar’erov (Advancement of a drilling-lasting technology for the open pits’ final position), Apatity, izd-vo Kol’skogo nauchnogo tsentra RAN, 2008, 224 p.
16. Zhirov D. V., Rybin V. V., Klimov S. A. Melikhova G. S. Zav’yalov A. A. Inzhenernaya Zashchita. 2014, no 02(02), pp. 22–31.
17. Federal’nye normy i pravila v oblasti promyshlennoy bezopasnosti «Pravila bezopasnosti pri vedenii gornykh rabot i pererabotke tverdykh poleznykh iskopaemykh» (Federal rules and regulations on industrial safety «Safety regulations in mining and mineral processing»), Saint-Petersburg, TsOTPBSPPO, 2014, 216 p.
Mining World Russia
Subscribe for our dispatch