USE OF HEAT ENERGY OF RETURN VENTILATION AIR IN UNDERGROUND MINES

The use of renewable sources of energy is the high priority objective of the heat-power engineering in the Russian Federation. Currently, the deeper level mining is faced with the increased natural temperature of rocks and, as a consequence, with the higher heat input in underground mine air. Ventilation air, having flown through all underground excavations, may contain much low-grade heat energy, which is ejected in the atmosphere. The use of the energy potential of return ventilation air of underground mines may yield different economic and environmental efficiency depending on ventilation network, natural temperature of rocks and distance between a mine and industrial infrastructure. This article considers a process flow diagram of using heat energy of return ventilation are in a mine and reports data of economical and environmental evaluation of expediency of applying this process flow diagram to partial heat energy supply in a mine. It is shown how payback of low-potential heat energy sources is related with the return ventilation air temperature.


Keywords

Еnergy saving, low-potential energy, economic efficiency, toxic emission, ecological situation, heat supply, mine ventilation, main mine fan, air duct, processing plant, heat pump unit, thermodynamic calculation.

Issue number: 11
Year: 2016
ISBN:
UDK: 622.4
DOI:
Authors: Mishneva G. S., Klyukin Yu. A., Borodavkin D. A.

About authors: Mishneva G.S., Assistant Professor, e-mail: Mishneva.Galina1941@yandex.ru, Perm National Research Polytechnic University, 614990, Perm, Russia, Klyukin Yu.A., Engineer, e-mail: aeroyuri@mail.ru, Mining Institute of Ural Branch of Russian Academy of Sciences, 614007, Perm, Russia, Borodavkin D.A., Technician, e-mail: dimaborodavkin@rambler.ru, Mining Institute of Ural Branch of Russian Academy of Sciences, 614007, Perm, Russia.

REFERENCES: 1. Gubina I. A., Gorshkov A. S. Stroitel’stvo unikal’nykh zdaniy i sooruzheniy. 2015, no 4 (31), pp. 209–219.
2. Mironov E. B., Shisharina A. N. Vestnik NGIEI. 2014, no 12(43), pp. 58–64.
3. Teplovye nasosy. 2014, no 6 (15), pp. 25–29.
4. Issledovanie i razrabotka sistem energosnabzheniya s ispol’zovaniem vozobnovlyaemykh istochnikov energii. Ob”edinennyy institut vysokikh temperatur RAN (Study and design of power services using renewable sources of energy. Joint Institute for High Temperatures, Russian Academy of Sciences), Moscow, 2007.
5. Trubaev P. A. Teplovye nasosy: Uchebnoe posobie dlya magistrov (ТHeat power units: Master’s education guidance), Belgorod, 2009, 142 p.
6. Rybach L. Status and prospects of geothermal heat pumps (GHP) in Europe and worldwide; sustainability aspects of GHPs. International course of geothermal heat pumps, 2002.
7. Kazakov B. P., Shalimov A. V., Grishin E. L. Izvestiya Tul’skogo gosudarstvennogo universiteta. Nauki o Zemle. 2010, no 2, pp. 64–69.
8. Levin L. Yu., Semin M. A., Zaytsev A. V. Fiziko-tekhnicheskie problemy razrabotki mestorozhdeniy poleznykh iskopaemykh. 2014, no 2, pp. 154–161.
9. Kazakov B. P., Shalimov A. V., Semin M. A. Stability of natural ventilation mode after main fan shutdown. International Journal of Heat and Mass Transfer. 2015. Vol. 86. pp. 288–293.
10. Levin L. Yu., Semin M. A., Klyukin Yu. A. Vestnik permskogo natsional’nogo issledovatel’skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo. 2015, no 17, pp. 89–97.
11. Beloglazova T. N. Prikladnoe ispol’zovanie prakticheskoy metodiki ekonomicheskoy otsenki variantov tekhnicheskikh resheniy (Application of economic appraisal procedure for alternate engineering solutions), Perm, 2016. 22 p.
12. Bondaletova L. I., Novikov V. T., Alekseev N. A. Raschet vybrosov zagryaznyayushchikh veshchestv pri szhiganii topliva v kotloagregatakh kotel’nykh. Metodicheskoe posobie (Calculation of toxic emission of fuel combustion in boiler units. Instructional guidelines), Tomsk, 2000, 39 p.
Mining World Russia
Subscribe for our dispatch