The analysis of information sources in the field of the proposed similarity criteria of work flotation machines. Investigation of criteria of efficiency of flotation machines. In the proposed approach the average characteristics of the mass transfer obosnovano the use of experimental – calculation method determining the distribution function of the fractions (range flotation), is based on the use of the generalized equation of flotation kinetics Beloglazova, and designed by V.D. Sekhirev. It is shown that the form of the spectrum and at the position on the axis Km lies all the information about the substance and the efficiency of the flotation machine.

This study has been supported by the Russian Science Foundation, Project No. 141700393.


Flotation machine, mass transfer, fotocamere, specific aeration, the pulp density.

Issue number: 11
Year: 2016
UDK: 621.928.5
Authors: Samygin V. D.

About authors: Samygin V.D., Doctor of Technical Sciences, Professor, Leading Expert, e-mail:, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

REFERENCES: 1. Pogorelyy A. G. Izvestiya vuzov. Tsvetnaya metallurgiya. 1961, no 5, pp. 59–68.
2. Arbiter N., Harris C. C., Yap R. F. The air flow number in flotation machine scale-up. International Journal of Mineral Processing. 1976. Vol. 3, no 3. pp. 257–280.
3. Schubert H. On some aspects of the hydrodynamics of flotation processes. Flotation of Sulphide Minerals. Elsevier, 1985. Vol. 6. pp. 337–355.
4. Finch J. A., Dobby G. S. Column Flotation. Oxford: Pergamon, 1990. 180 p.
5. Gorain B. K. Studies on impeller type, impeller speed and air flowrate in an industrial scale flotation cell. Part 5: validation of k–Sb relationship and effect of froth depth.Minerals Engineering. 1998. Vol. 1. pp. 615–626.
6. Heiskanen K. On the relationship between flotation rate and bubble surface area flux. Minerals Engineering. 2000. Vol. 13, no 2. pp. 141–149.
7. Finch J. A., Dobby G. S. Column Flotation. Oxford: Pergamon, 1990. 180 p.
8. Wierink G. A., Heiskanen K. Momentum coupling in flotationmodelling. In Proc. Computational Modelling ’08, Cape Town, South Africa Modeling local flotation frequency in aturbulent flow field. 2008.
9. Margaritis Kostoglou, Thodoris D. Karapantsios, Kostas A. Matis M. Kostoglou Advances in Colloid and Interface Science 122 (2006) 79-91.
10. Koh P. T. L., Schwarz M. P. CFD modeling of bubble-particle collision rates and efficiencies in a flotation cell. Miner Eng. 2003;16:1055-9.
11. Koh P. T. L., Schwarz M. P. CFD modeling of bubble-particle attachments in a flotation cell. Proceedings of centenary of flotation symposium, Brisbane, Australia, June; 2005. pp. 201–7.
12. Bloom F., Heindel T. J. An approximate analytical expression for the probability of attachment by sliding. J Colloid Interface Sci 1999;218: 564-77.
13. Bloom F., Heindel T. J. On the structure of collision and detachment frequencies in flotation models. Chem Eng. Sci 2002;57:2467-73.
14. Bloom F., Heindel T. J. Modeling flotation separation in a semi-batch process. Chem Eng. Sci 2003;58:353-65.
15. Samygin V. D., Filippov L. O., Shekhirev D. V. Osnovy obogashcheniya rud (Основы обогащения руд), Moscow, Al’teks, 2003, 304 p.
16. Saleh A. M. A study on the performance of second order models and two phase models in iron ore flotation. Physicochem. Probl. Miner. Process. 44(2010) 215–230.
Mining World Russia
Subscribe for our dispatch