The article presents the procedure and results of the research into the process of heat exchange between an enclosed-type subway station with a double-track tunnel and enclosing soil. The mathematical model of the soil–enclosed station heat exchange is constructed and its conformity with the in situ research data obtained in Novosibirsk Metro is estimated. The heat exchange process is analyzed by means of the finite-element modeling of nonstationary heat transmission from the subway station rooms to soil. Based on the research data, the analytical dependences of the specific heat flow from a track section, passenger platform, combined rectifier–secondary substation and a ticket hall on the occurrence depth of the station, thermophysical properties of soil and the outward climate given the steady-state operation are obtained. It is shown that the change in the value of heat flow during a year given the steady-state operation is fluctuating and sign-alternating. For the enclosed-type stations at different depth of occurrence, the time of detecting the change in the heat flow behavior and the heat loss at the station in the initial operating period (operation year 1) are determined. It is found that the heat loss in the initial operating period is considerably higher than during the steady-state operation.


Subway, enclosed-type station, soil, specific heat flow, occurrence depth, thermophysical properties of soil, heat exchange.

Issue number: 2
Year: 2018
UDK: 628.8+622.4+625.042
DOI: 10.25018/0236-1493-2018-2-0-89-102
Authors: Kiyanitsa L. A.

About authors: Kiyanitsa L.A., Graduate Student, Engineer, е-mail:, The Federal Agency for Scientific Organizations (FASO Russia), Chinakal Institute of Mining Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia.


1. Mel'nik A. P., Mel'nik G. A., Polyankin A. G. Metro i tonneli. 2013, no 1, pp. 12—14.

2. Starkov A. Yu. Metro i tonneli. 2011, no 2, pp. 8—9.

3. Krasyuk A. M., Lugin I. V., Alferova E. L., Kiyanitsa L. A. Evaluation of ventilation flow charts for double-line subway tunnels without air chambers. Journal of mining science. 2016, vol. 52, no 4, pp. 740—751.

4. Metropoliteny SP 120.13330.2012. Aktualizirovannaya redaktsiya SNiP 32-02-2003 (Underground, set of rules 120.13330.2012. Revised edition SNiP 32-02-2003), Moscow, 2013, 260 p.

5. Sanitarnye pravila ekspluatatsii metropolitenov SP 2.5.2623-10. Izmeneniya i dopolneniya N 1 k SP 2.5.1337-03 (Sanitary rules of operation of subways, sanitary and epidemiological rules 2.5.1337-03. Changes and additions no 1 to set of rules 2.5.1337-03), Moscow, 2010, 15 p.

6. Kiyanitsa L. A., Lugin I. V. Fundamental'nye i prikladnye voprosy gornykh nauk. 2016, no 3, vol. 2, pp. 86—91.

7. Sadokierski S., Thiffeault J.-L. Heat Transfer in Underground Rail Tunnels. Physical Review E 77

(5 Pt 2):055306, May 2008.

8. Tsodikov V. Ya. Ventilyatsiya i teplosnabzhenie metropolitenov. Izd. 2-e (Ventilation and heating subways, 2nd edition), Moscow, Nedra, 1975, 568 p.

9. P'yankova A. Yu. Gornyy informatsionno-analiticheskiy byulleten'. 2014, no 1, pp. 407—414.

10. Krasyuk A. M., Lugin I. V., P'yankova A. Yu. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2012, no 3, pp. 64—74.

11. Dai G., Vardy A. Heat transfer in train/tunnel annulus. 9th International Symposium on Aerodynamics and ventilation of vehicle tunnels «Developments for the 21st Century». Aosta Valley, Italy: Earth Tech, 1997, pp. 359—378.

12. Sotnikov A. G. AVOK. 2010, no 8, pp. 62—67.

13. Fedorova N. N., Val'ger S. A., Danilov M. N., Zakharova Yu. V. Osnovy raboty v ANSYS 17 (Basics in ANSYS 17), Moscow, DMK Press, 2017, 210 p.

14. Teplovaya zashchita zdaniy SP 50.13330.2012. Aktualizirovannaya redaktsiya SNiP 23-02-2003

(Thermal protection of buildings, set of rules 50.13330.2012. Revised edition SNiP 23-02-2003), Moscow, 2013, 96 p.

15. Krasyuk A. M., Lugin I. V., P'yankova A. Yu. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2015, no 1, pp. 122—128.

16. Elektronnoe posobie ANSYS. Customer Training Material. Introduction to ANSYS Meshing.

17. P'yankova A. Yu. Prognozirovanie teplovykh rezhimov podzemnykh sooruzheniy metropolitenov melkogo zalozheniya v usloviyakh Zapadnoy Sibiri (Prediction of thermal conditions of underground facilities shallow subways in Western Siberia), Candidate’s thesis, Novosibirsk, 2016, 211 p.

18. Kumar S.,Pahuja D. D., Bakre A., Saha S. K. Prediction of unsteady heatgains using SES analysis in an interchange subway station of the Delhi metro. 11th International Symposium on Aerodynamics and ventilation of vehicle tunnels. Luzern, Switzerland: Earth Tech, 2003, pp. 411—426.

19. Krasyuk A. M., Lugin I. V. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2008, no 6, pp. 112—117.

20. Lugin I. V., Alferova E. L. Interekspo Geo-Sibir'. 2016, vol. 2, no 3, pp. 191—196.

Mining World Russia
Subscribe for our dispatch