SEASONAL VARIATION IN THE WATER LEVEL OF THE BAIKAL LAKE AND WEAK SEISMICITY IN THE BAIKAL RIFT ZONE

Developed and implemented using the finite element method (with COMSOL Multiphysics), the 3D geomechanical model of the Baikal Rift Zone includes the detailed block and faulting structure of rocks mass and physical properties of structural blocks and joints estimated using geophysical and seismo-tectonic information. Based on the data of seismicity catalog GlobalCMT (Harvard, USA) and model calculations of evolution of physical fields in the selected areas within the Baikal Rift System, the linear correlation has been performed between space and time of natural seismic events over a period from 1963 to 2017. The quantitative dependence between the number of weak seismic events (magnitude 2.7–4.5) and the increment in the major shearing stresses induced by the seasonal variation in the water level of the Baikal Lake is determined. The resultant empirical relations are valid along the faulting structures bordering the north-east and south-west shores of the Lake, and are applicable in prediction of seismic activity level in the mentioned areas of the Baikal Rift.


The study has been partly supported by the Russian Foundation for Basic Research, Project No. 15-05-06977. The authors extend their thanks to the Computation Center of the Novosibirsk State University for the provision of computational resources.

Keywords

Rock mass, geomechanical model, Baikal Rift Zone, weak seismicity, finite element method, correlation analysis.

Issue number: 2
Year: 2018
ISBN:
UDK: 622.83+550.341
DOI: 10.25018/0236-1493-2018-2-0-140-147
Authors: Nazarov L. A., Nazarova L. A., Miroshnichenko N. A., etc.

About authors: Nazarov L.A. (1), Doctor of Physical and Mathematical Sciences, Head of Laboratory, e-mail: mining1957@mail.ru, Nazarova L.A. (1), Doctor of Physical and Mathematical Sciences, Chief Researcher, e-mail: larisa@misd.ru, Miroshnichenko N.A. (1), Candidate of Physico-Mathematical Sciences, Researcher, e-mail: mna@misd.ru, Panov A.V. (1), Junior Researcher, e-mail: anton-700@yandex.ru, Dyadkov P.G. (2), Candidate of Geologo-Mineralogical Sciences, Senior Researcher, e-mail: DyadkovPG@ipgg.sbras.ru, Tsibizov L.V. (2), Junior Researcher, e-mail: tsibizov@gmal.com 1) Chinakal Institute of Mining of Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia, 2) Trofimuk Institute of Petroleum Geology and Geophysics of Siberian, Siberian Branch of Russian Academy of Sciences, 630090, Novosibirsk, Russia.

REFERENCES:

1. Talwani P. On the nature of reservoir-induced seismicity. Pure Appl. Geophys. 1997. Vol. 150. pp. 473—492.

2. Liu S., Xu L., Talwani P. Reservoir-induced seismicity in the Danjiangkou Reservoir: a quantitative analysis. Geophys. J. Int. 2011. Vol. 185. pp. 514—528.

3. Tashlykova T., Ryashchenko T. Inzhenernaya zashchita. 2015. Vyp. 11.

4. Asming V. E., Baranov S. V., Vinogradov A. N., Vinogradov Yu. A. Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. 2009. Vol. 12, no 4, pp. 571—575.

5. Dyad'kov P. G. Fizicheskaya mezomekhanika. 2003. Vol. 6, no 1, pp. 55—61.

6. Ellsworth W. L. Injection-induced earthquakes. Science. 2013. Vol. 341, Issue 6142, 1225942.

7. Huang Y., Ellsworth W. L., Beroza G. C. Stress drops of induced and tectonic earthquakes in the central United States are indistinguishable. Science Advances. 2017 August 3(8): e1700772.

8. Nazarov L. A., Nazarova L. A., Yaroslavtsev A. F. Fiziko-tekhnicheskiye problemy razrabotki polez-

nykh iskopayemykh. 2011, no 6, pp. 6—13.

9. Logachev N. A. Geologiya i geofizika. 2003. Vol. 44, no 5, pp. 391—406.

10. Molnar P., Tapponier P. Cenozoic tectonics of continental collision. Science. 1975. Vol. 189, no 4201. pp. 419—426.

11. Zonenshayn L. P., Savostin L. A. Vvedenie v geodinamiku (Introduction to geodynamics), Moscow, Nedra, 1979, 311 p.

12. Logachev N. A., Florensov N. A. The Baikal system of rift valleys. Tectonophysics. 1978. no 45. pp. 1—13.

13. Dyad'kov P. G., Nazarov L. A., Nazarova L. A. Geologiya i geofizika. 1997. Vol. 38, no 12, pp. 2001—2010.

14. Dyad'kov P. G., Nazarov L. A., Nazarova L. A. Geologiya i geofizika. 1999. Vol. 40, no 3, pp. 373—386.

15. Dyad'kov P. G., Nazarov L. A., Nazarova L. A. Fizicheskaya mezomekhanika. 2004. Vol. 7, no 1, pp. 91—101.

16. Mel'nikova V. I., Radziminovich N. A. Geologiya i geofizika. 1998. Vol. 39, no 11, pp. 1598—1607.

17. Lukhnev A. V., San'kov V. A., Miroshnichenko A. I., Ashurkov S. V., Kale E. Geologiya i geofizika. 2010. Vol. 51, no 7, pp. 1006—1017.

18. Sherman S. I., Seminskiy K. Zh., Cheremnykh A. V. Aktual'nye voprosy sovremennoy geodinamiki Tsentral'noy Azii (Current issues of the modern geodynamics in the Central Asia), Novosibirsk, Izd-vo SO RAN, 2005, 297 p.

19. Lunina O. V., Gladkov A. S., Gladkov A. A. Tikhookeanskaya geologiya. 2012. Vol. 31, no 1, pp. 49—60.

20. Nazarova L. A. Doklady Akademii nauk. 1995. Vol. 342, no 6, pp. 804—808.

21. Harvard Seismology Group. URL: www.seismology.harvard.edu/data.

22. Barton N. R. Deformation phenomena in jointed rock. Geotechnique. 1986. Vol. 36, no 2. pp. 147—167.

Mining World Russia
Subscribe for our dispatch