ESTIMATION PROCEDURE FOR INFLUENCE OF HEATING RATE ON ACOUSTIC EMISSION ACTIVITY IN THE ANALYSIS OF THERMALLY STIMULATED FAILURE OF ROCKS

The article describes and founds the procedure of rough estimation of level of heating rate effect on thermoacoustic emission (TAE) intensity. Thermally stimulated failure of rocks controlled by two factors — temperature and rate of temperature change (heating or cooling rate). Temperature effect is determined successfully by building of «TAE intensity — temperature» dependence. Thermal analog of Kaiser effect and individually response pattern are being revealed. Heating rate effect may be determined the only substantially harder way by examination of big set of samples. Problem is especially urgent if researcher has paucity of samples. For problem solving, the special procedure is suggested. It enables researcher to estimate of level of heating rate effect by one experiment (heating-cooling cycle) roughly and uses stepped heating. In heat power step (jump), temperature has not time to substantially change and its effect may be neglected. The procedure founding and derivation of an estimation formula are described on the basis of relevant multiplicative TAE inducing model. The procedure algorithm is demonstrated with data of two experiments. Results of heating rate effect estimation are given for rock samples of different composition, structure and genesis, with designation of temperature in step. Great effect is observed at temperature 300—500° C by thermal analog of Kaiser effect (in primary heating). Effect rises when temperature approaches to α→β quartz phase transition, for most of quartz-bearing rocks. Effect is detected also for some repeated heats of some rocks and it is smaller. Also, it is observed that heating rate modulates TAE intensity. For cause-and-effect relation evidence, cross-correlation analysis is made with using of running windows (selections from input signal). It’s shown, high correlation is detected with stable lag. The procedure can be used for practical and fundamental problems solving in laboratory and field studies, when spatial-temporal temperature gradient must be took in attention.


The study has been carried out under the state study contract on Physics of Transient and Trigger Phenomena in Seismicity: Laboratory Modeling, Field Observations, Petrographic Analysis, State Registration No. 0144-2014-0096.

Keywords

Rocks, thermally stimulated rock failure, thermoacoustic emission, microcracks, heating rate, laboratory study.

Issue number: 5
Year: 2018
ISBN:
UDK: 550.83+620.179
DOI: 10.25018/0236-1493-2018-5-0-5-25
Authors: Kaznacheev P. A., Maibuk Z.-Yu. Ya., Ponomarev A. V.

About authors: Kaznacheev P.A., Candidate of Technical Sciences, Researcher, e-mail: p_a_k@mail.ru, Maibuk Z.-Yu.Ya., Senior Researcher, Ponomarev A.V., Doctor of Physical and Mathematical Sciences, Head of Laboratory, United Schmidt Institute of Physics of the Earth, Russian Academy of Sciences, 123242, Moscow, Russia.

REFERENCES:

1. Vasin R. N., Nikitin A. N., Lokaichek T., Rudaev V. Fizika Zemli. 2006, no 10, pp. 26—35.

2. Vinnikov V. A., Kirichenko I. V., Shkuratnik V. L. Gornyy informatsionno-analiticheskiy byulleten'. 2008, no 5, pp. 81—88.

3. Vinnikov V. A., Shkuratnik V. L. Prikladnaya mekhanika i teoreticheskaya fizika. 2008, vol. 49, no 2, pp. 301—305.

4. Vinnikov V. A., Voznesenskiy A. S., Ustinov K. B., Shkuratnik V. L. Prikladnaya mekhanika i teore-

ticheskaya fizika. 2010, vol. 51, no 1, pp. 100—105.

5. Deshcherevskiy A. V., Sidorin A. Ya. Seysmicheskie pribory. 2011, vol. 47, no 2, pp. 21—43.

6. Deshcherevskiy A. V., Zhuravlev V. I., Nikol'skiy A. N., Sidorin A. Ya. Nauka i tekhnologicheskie razrabotki. 2016, vol. 95, no 3, pp. 35—48. DOI: 10.21455/std2016.4-6.

7. Izmaylov D. Yu. PiKAD. 2007, no 3, pp. 42—47.

8. Kaznacheev P. A., Maybuk Z.-Yu. Ya., Ponomarev A. V., Smirnov V. B., Bondarenko N. B., Matveev M. A., Arora K. Sovremennaya tektonofizika. Metody i rezul'taty. Materialy pyatoy molodezhnoy tektonofizicheskoy shkoly-seminara (Modern Tectonophysics. Methods and Results. Material of the Fifth Youth Tectonophysical School-Seminar), Moscow, IFZ, 2017, pp. 247—249.

9. Kaznacheev P. A., Maybuk Z.-Yu. Ya., Ponomarev A. V., Smirnov V. B., Bondarenko N. B. Triggernye effekty v geosistemakh (Moskva, 6—9 iyunya 2017 g.): materialy IV Vserossiyskoy konferentsii s mezhdunarodnym uchastiem (Trigger Effects in Geosystems (Moscow, June 6—9, 2017): Materials of IV All-Russian Conference with International Participation), Moscow, GEOS, 2017, pp. 163—171.

10. Lyubushin A. A. Fizika Zemli. 2016, no 6, pp. 28—38.

11. Nikitin A. N., Vasin R. N., Rodkin M. V. Fizika Zemli. 2009, no 4, pp. 67—75.

12. Rzhevskiy V. V., Yamshchikov V. S., Shkuratnik V. L., Farafonov V. M., Lykov K. G. Doklady AN SSSR. 1985, vol. 283, no 4, pp. 843—845.

13. Sistema A-Line 32D. Sayt o sisteme registratsii akusticheskoy emissii i programme A-Line 32D. OOO «Interyunis». 2017. URL: https://www.interunis.ru/ru/produkcziya-a-line-32d.html (accessed 28.12.2017).

14. Sobolev G. A., Ponomarev A. V., Nikitin A. N., Balagurov A. M., Vasin R. N. Fizika Zemli. 2004, no 10, pp. 5—15.

15. Feyzullaev A. A., Ismaylova G. G., Babazade A. N. Gornye nauki i tekhnologii. 2017, no 2, pp. 3—10. DOI:10.17073/2500-0632-2017-2-3-8.

16. Shkuratnik V. L., Novikov E. A. Prikladnaya mekhanika i teoreticheskaya fizika. 2015, vol. 56, no 3, pp. 164—172.

17. Shkuratnik V. L., Voznesenskiy A. S., Vinnikov V. A. Termostimulirovannaya akusticheskaya emissiya v geomaterialakh (Thermally Stimulated Acoustic Emission in Geomaterials), Moscow, izd-vo «Gornaya kniga», 2015.

18. Shkuratnik V. L., Novikov E. A. Gornyy zhurnal. 2017, no 6, pp. 21—27.

19. Shkuratnik V. L., Novikov E. A., Oshkin R. O. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2014, no 2, pp. 69—76.

20. Benson P. M., Vinciguerra S., Meredith P. G., Young R. P. Laboratory simulation of volcano seismicity. Science. 2008. Vol. 322. Pp. 249—252. DOI: 10.1126/science.1161927.

21. Browning J., Meredith P., Gudmundsson A. Cooling-dominated cracking in thermally stressed volcanic rocks. Geophys. Res. Lett. 2016. Vol. 43. Iss. 16. Pp. 8417—8425.

22. Burlini L., Vinciguerra S., Toro G. D., Meredith P., Burg J.-P. Seismicity preceding volcanic eruptions: New experimental insights. Geology. 2007. Vol. 35. No. 2. Pp. 183—186. DOI: 10.1130/G23195A.

23. Jones C., Keaney G., Meredith P. G., Murrell S. A. F. Acoustic emission and fluid permeability measurements on thermal cracked rocks. Phys. Chem. Earth. 1997. Vol. 22. No. 1—2. Pp. 13—17.

24. Lyubushin A. A. Analysis of canonical coherences in the problems of geophysical monitoring.Izvestiya, Physics of the Solid Earth. 1998. Vol. 34, No. 1. Pp. 52—58.

25. Molaro J. L., Byrne S., Langer S. A. Grain-scale thermoelastic stresses and spatiotemporal temperature gradients on airless bodies, implications for rock breakdown. Journal of Geophysical Research: Planets. 2015. Vol. 120. Pp. 255—277. DOI: 10.1002/2014JE004729.

26. Nasseri M. H. B., Schubnel A., Benson P. M., Young R. P. Common evolution of mechanical and transport properties in thermally cracked westerly granite at elevated hydrostatic pressure.Pure and Applied Geophysics. 2009. Vol. 166. Pp. 927—948. DOI: 10.1007/s00024-009-0485-2.

27. Todd T. P. Effects of cracks on elastic properties of low porosity rocks. PhD thesis. Massachusetts Institute of Technology, 1973.

28. Vinciguerra S., Trovato C., Meredith P. G., Benson P. M. Relating seismic velocities, thermal cracking and permeability in Mt. Etna and Iceland basalts. International Journal of Rock Mechanics & Mining Sciences. 2005. Vol. 42. Pp. 900—910. DOI: 10.1016/j.ijrmms.2005.05.022.

29. Yong C., Wang C.-Y. Thermally induced acoustic emission in Westerly granite. Geophys. Res. Lett. 1980. Vol. 7. No. 12. Pp. 1089—1092.

Subscribe for our dispatch