It is discussed how stress memory effects in acoustic emission (Kaiser effect) can be used to control stress state of rock mass. The «memory bearer» is suggested to be composite materials synthesized at laboratory scale rather than rocks. One of the promising lines of development of this method can be new approaches to processing of measurement data. It is proposed to use an integrated spectrum analysis of acoustic emission signals by means of construction of complete spectrograms of loading process. The methods of transformation of load–time curve in order to be synchronous with the spectrograms are described. It is shown that in order to trace features of Kaiser effect, the spectrograms should be subjected to sliding-average smoothing with a rectangular window. Aspects of choosing the window parameters are described. The analysis of the processed spectrogram reveals that the effect of stress memory in the test composites is represented by a burst in acoustic emission activity and, at the same time, by an abrupt change in the spectrum of acoustic events in the frequency band from 130 to 150 kHz. The detected regularity allows pinpointing the moment of Kaiser effect even in very noisy acoustograms.

This study has been supported by the Russian Science Foundation, Project No. 17-77-10009.


Kaiser effect, stress state, rock mass control, spectrum analysis, composite material.

Issue number: 5
Year: 2018
UDK: 622.02:539.2
DOI: 10.25018/0236-1493-2018-5-0-129-135
Authors: Nikolenko P. V., Chepur M. D.

About authors: Nikolenko P.V., Candidate of Technical Sciences, Assistant Professor, Chepur M.D., Student, Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail: ftkp@mail.ru.


1. Kaiser J. Erkenntnisse und Folgerungen aus der Messung von Geräuschen bei Zug-beanspruchimg von metallischen Werkstoffen, Archiv fur das Eisenhuttenwesen, 1953, Vol. 24, No. 1, 2, pp. 43—45.

2. Kanagawa T., Hayashi M., Nakasa H. Estimation of spatial geo-stress in rock samples using Kaiser effect. Centr. Res. Inst. of Electric Power Ind. (CRIEPI) Report No. 375017. Abico, Japan, 1976.

3. Kurita K., Fujii N. Stress memory of crystalline rocks in acoustic emission. Geoph. Res. Letts. 1979. Vol. 6. No. 1. P.9—12.

4. Wang H.-J., Tang L., Ren X.-H., Yang A.-Y., Niu Y. Mechanism of rock deformation memory effect in low stress region and its memory fading, Rock and Soil Mechanics, 2014, Vol. 35, Issue 4, pp. 1007—1014.

5. Meng Q., Zhang M. E, Han L., Pu H., Chen Y. Acoustic emission characteristics of red sand-stone specimens under uniaxial cyclic loading and unloading compression, Rock Mechanics and Rock Engineering, 2018, pp. 1—20.

6. Holcomb D. J., Costin L. S. Detecting damage surfaces in brittle materials using acoustic emission, J. Appl. Mech., Trans. ASME, 1986, Vol. 53, No. 3, pp. 536—544.

7. Hughson D. R., Crawford A. M. Kaiser effect gauging: the influence of confining stress on its response, Proc. 6th International Congress on Rock.Mechanics, Rotterdam: A. A. Balkema, 1987, Vol. 2, pp. 981—985.

8. Nikolenko P. V., Shkuratnik V. L. Acoustic emission in composites and application for stress monitoring in in rock masse, J. of Mining Science, 2014, Vol. 61, Issue 2. pp. 80—83.

9. Zhang N.-B., Qi Q.-X., Ouyang Z.-H., Li H.-Y., Zhao S.-K., Xu, Z.-J. Experimental on acoustic emission characteristics of marble with different stress paths. Meitan Xuebao/Journal of the China Coal Society, 2014, Vol. 39, Issue 2, pp. 389—394.

10. Ermolov I. N. Teoriya i praktika ul'trazvukovogo kontrolya (Theory and practice of ultrasonic control), Moscow, Mashinostroenie, 1981. 240 p.

11. Nikolenko P. V., Tsarikov A. Yu. Gornyy informatsionno-analiticheskiy byulleten'. 2013, no 4, pp. 273—278.

12. Kuksenko V. S., Stanchits S. A., Tomilin N. G. Mekhanika kompozitnykh materialov. 1983, no 3, pp. 536—543.

13. Kuksenko V. S., Mansurov V. A., Manzhikov B. Ts., Frolov D. I., Stanchits S. A., Inzhevatkin I. E. Izvestiya AN SSSR, Fizika Zemli. 1990, no 6, pp. 5.

Subscribe for our dispatch