SYSTEMIC APPROACH TO ESTIMATION OF METHANE HAZARD IN DEVELOPMENT HEADINGS

The core of mine air safety is efficient ventilation of development and breakage headings. The key elements in the ventilation system of development headings of any purpose are a local fan and an air duct or a combination of air ducts, which represent a ventilation network with a specific aerodynamic drag. Local fan operation mode in a development heading is conditioned by the physical characteristics of the local fan–ventilation network system. The aerodynamic characteristics of the fan are converted to an electronic form using an assigned graphic system. In AutoCAD environment, finding of a couple of numbers x and y is performed, which are simultaneously curve coordinates and input data to be entered in Eureqa software. The proposed algorithm to model local fan modes in development headings enables solving direct and inverse problems connected with local ventilation in coal and ore mines at the stages of mine planning and operation. Accordingly, a mathematical model of aerodynamic conditions should be constructed for local fans in each development heading using accurate approximations of aerodynamic characteristics of a specific fan. The constructed mathematical model is added with the approximations of power input versus delivery of a fan. The procedure for the approximation of aerodynamic characteristics and power input–delivery curves of local fans allows the wanted analytical dependences to be obtained at the stage of the factory tests of local ventilation fans. The proposed approach to individual, subjectunique aerodynamic mathematical modeling of ventilation of development headings will essentially enhance mining safety in terms of gas hazard factor.

Keywords

Systemic approach, technology, estimation, methane hazard, development heading, coal mine.

Issue number: 8
Year: 2018
ISBN:
UDK: 622.414.2
DOI: 10.25018/0236-1493-2018-8-0-54-64
Authors: Sencus Val. V., Ermakov N. A., Radzhabova L. G.

About authors: Sencus Val.V., Candidate of Technical Sciences, Head of Mining Department, e-mail: senkus@yandex.ru, LLC «Proektgidrougol-H», Novokuznetsk, Russia, Ermakov N.A. (1), Leading Engineer, Radzhabova L.G. (1), Chief Specialist, 1) Branch of LLC «Sibniiugleobogaschenie», Prokopievsk, Russia.

REFERENCES:

1. Preduprezhdenie gazodinamicheskikh yavleniy v ugol'nykh shakhtakh: sbornik dokumentov. Seriya 5. Vyp. 2 [Prevention of gas-dynamic phenomena in coal mines: collection of documents. Series 5. Issue 2], Moscow, GUP «NTU po bezopasnosti Gosgortekhnadzora Rossii», 2001, 320 p.

2. Karacan C. O., Ruiz F. A., Cote M., Phipps S. Coal mine methane: A review of capture and utilization practices with benefits to mining safety and to greenhouse gas reduction. International Journal of Coal Geology. 2011. 86. Pp. 121—156.

3. Heather N. Dougherty, C. Ozgen Karacan. A new methane control and prediction software suite for longwall mines. Computers & Geosciences. 2011. 37. Pp. 1490—1500.

4. C. Özgen Karacan. Modeling and prediction of ventilation methane emissions of U.S. Longwall mines using supervised artificial neural networks. International Journal of Coal Geology. 2008. 73. Pp. 371—387.

5. Clarkson C. R. Production data analysis of unconventional gas wells: Review of theory and best practices. International Journal of Coal Geology. 2013. 109—110. Pp. 101—146.

6. Liu Y., Xia B., Liu X. A Novel Method of Orienting Hydraulic Fractures in Coal Mines and Its Mechanism of Intensified Conduction. Journal of Natural Gas Science & Engineering. 2015. DOI: 10.1016/j. jngse.2015.08.054.

7. U.S. EPA, 2012. Global anthropogenic non-CO2 greenhouse gas emissions: 1990—2030. US Environmental Protection Agency.

8. Dazhao Song et al. Evaluation of coal seam hydraulic fracturing using the direct current method. International Journal of Rock Mechanics & Mining Sciences. 2015. 78. Pp. 230—239.

9. Kachurin N. M., Babovnikov A. L. Gassing during the break and transport of coal in a retreatlongwall. Development of new technologies and equipment for mine haulage and hoisting. Budva. 2005. Pp. 245—249.

10. Yanovskaya M. F. O skorosti desorbtsii metana iz razrushennogo uglya. Problemy rudnichnoy aerologii: sbornik statey [On the rate of methane desorption from coal is destroyed. Problems of mine aerology: Collection of articles], Moscow, Gosgortekhizdat, 1959, pp. 32—37.

11. J. Siemek, J. Rajtar Simulation of gas ouflow from porousfissured media. Arch. Mining. Sci. 1989. 34, no 1. Pp. 119—128.

12. Vasyuchkov Yu. F. Diffuziya metana v iskopaemykh uglyakh [Chemistry of solid fuel] Khimiya tverdogo topliva. 1976, no 4, pp. 76—79. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.