The common mining systems for steeply dipping coal seams, which are mostly used in Kuzbass mines, are discussed. The accumulated experience of coal mining under different conditions has allowed improvement of mining systems. Flat and pith coal seams of low and medium thickness are widely mined using longwalling which greatly reduces coal loss as compared with room-and-pillar methods. As science and technology advanced, in the 21st century, new modern and highly productive mechanized longwall systems were manufactured for flat coal mining, which enabled coal production without considerable loss in subsoil. Underground mining of steeply dipping coal seams is currently connected with high labor content and low productivity. Furthermore, steeply dipping coal mining features operational difficulties and continuous presence of personnel in the face area in order to perform complex process steps and for ground control, which is obviously hazardous and affects mining safety. To date, the persistent improvement of equipment (first of all, in terms of safety and reliability) and technology of coal mining is a necessary condition of efficiency of the coal industry. Despite considerable expenditures, restructuring of the coal industry has come to a generally positive result.


Longwall, coal mine, chemical reinforcement, resin, efficiency improvement, coal–rock mass, damaged zone.

Issue number: 11
Year: 2018
UDK: 622.
DOI: 10.25018/0236-1493-2018-11-0-39-45
Authors: Reshetnyak S. N.,Maksimenko Yu. M.

About authors: Reshetnyak S.N. (1), Candidate of Technical Sciences, Assistant Professor; Senior Researcher, e-mail:, Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia, Maksimenko Yu.M. (1), Candidate of Technical Sciences, Assistant Professor, 1) National University of Science and Technology «MISiS», 119049, Moscow, Russia.


1. Kubrin S. S. Reshetnyak S. N. Kopylov K. N. Energoeffektivnoe operatsionnoe upravlenie ochistnym uchastkom [Energy-efficient longwall operation control], Izvestiya vuzov. Gornyy zhurnal. 2016, no 5, pp. 4—10. [In Russ].

2. Shi L., Liu Y., Wang S. Overburden Failure Height and Fissure Evolution Characteristics of Deep Buried, Extra Thick Coal Seam and Fully-Mechanized Caving Mining of China. Proceedings of the 2015 International Conference on Water Resources and Environment (Beijing, 25—28 July 2015), 2015, pp. 207—216.

3. Yu H., Kong L., Niu Z., Zhu S., Jing D. Numerical Simulation of Bolt-Mesh-Anchor Support Technology at Soft Rock Roadway. Advanced Materials Research, 868, 2013, pp. 251—254.

4. Garg P., Jaiswal A. Estimation of Modulus of the Caved Rock for Underground Coal Mines by Back Analysis using Numerical Modelling, Journal of The Institution of Engineers (India), 2015, pp. 1—5.

5. Yutyaev E. P. Obespechenie bezopasnosti pri intensivnoy razrabotke plastov na shakhtakh OAO «SUEK-Kuzbass» [Safety of high-rate coal extraction in mines of SUEK-Kuzbass], Gornaya promyshlennost'. 2015, no 1 (119), pp. 18. [In Russ].

6. Chernyak I. L., Yarunin S. A. Upravlenie sostoyaniem massiva gornykh porod [Ground control], Moscow, Nedra, 1995, pp. 395.

7. Zakharov V. N., Zaburdyaev V. S., Artem'ev V. B. Ugleporodnye massivy: prognoz ustoychivosti, riski, bezopasnost' [Coal–rock mass: Stability prediction, risks, safety], Moscow, Izd-vo «Gornoe delo» OOO «Kimmeriyskiy tsentr», 2013, 280 p.

8. Reshetov A. V., Konovalov L. I., Artem'ev N. P. Opyt uprochneniya neustoychivogo ugol'nogo zaboya [Experience of reinforcement of unstable coal face], Ugol'. 1990, no 1, pp. 47—48. [In Russ].

9. Demin V. F., Portnov V. S., Musin R. A., Mausymbaeva A. D., Demin V. V. Ankernoe kreplenie gornykh vyrabotok dlya povysheniya ustoychivosti ugleporodnogo massiva [Roof bolting in underground roadways for improving stability of coal–rock mass], Ugol'. 2013, no 11, pp. 70—73. [In Russ].

10. Zolotykh S. S., Krasyuk N. N., Maksimenko Yu. M. Tekhnologiya otrabotki narushennykh uchastkakh vyemochnykh poley s operativnym khimicheskim uprochneniem ugleporodnogo massiva [Mining technology for damaged areas in coal–rock mass with operational chemical reinforcement], Gornyy informatsionno-analiticheskiy byulleten’. 2003, no 1, pp. 165—169. [In Russ].

11. Krasyuk N. N., Maksimenko Yu. M., Reshetov S. E., Zankin N. V. Tekhnologiya izolirovaniya otrabotannykh uchastkov zakryvaemykh shakht ot deystvuyushchikh gornykh vyrabotok [Technology of isolation of mined-out openings of closed mines from operating roadways], Gornyy informatsionno-analiticheskiy byulleten’. 2003, no 2, pp. 10—13. [In Russ].

12. Chubrikov A. V., Markov A. S., Khripkov V. V. Tekhnologiya uprochneniya zon narusheniya polimernoy smoloy dlya sokhraneniya vysokikh nagruzok na ochistnoy zaboy [Technology of damaged zone reinforcement by polymeric resin towards sustainable high face output], Ugol'. 2005, no 5, pp. 44—49. [In Russ].

13. Klimchuk I. V., CHubrikov A. V. Opyt uprochneniya narushennykh uchastkov ugol'nykh plastov organomineral'noy smoloy Vilkit-E v Kuzbasse [Experience of damaged coal reinforcement by organic–mineral resin VILKIT-E in Kusbass], Glyukauf, 2003, May no 1(2), pp. 12—16.

14. Uvarova V. A. Issledovanie pozharoopasnykh svoystv polimernykh materialov, primenyaemykh dlya krepleniya gornykh vyrabotok [Study of fire-hazardous properties of polymeric materials used for roadway support], Gornye nauki i tekhnologii. 2014, no 3, pp. 149—153. [In Russ].

Subscribe for our dispatch