EFFECT OF FREEZING–THAWING CYCLES ON STRENGTH CHARACTERISTICS OF FINE-GRAINED DISPERSELY REINFORCED CONCRETE WITH BASALT FIBER

The article presents some research findings on the effect of basalt fiber 6 mm in length with a diameter of 23 μm on strength of fine-grained concrete (cement-and-sand matrix) under bending, compression and alternating thermal forces. It is found that the maximum increase in the bending strength of concrete by 31–36% is reached at the fiber content of 4–6% of dry mixture weight (cement+sand). There is no considerable increment in the compressive strength; moreover, at the fiber content of 6%, the compressive strength decreases by 16% as compared with the initial (non-reinforced) specimens. Exposure to 5 accelerated freezing–thawing cycles (freezing temperature 50±5°С, State Standard GOST 10060.2-95) resulted in the reduction in the bending strength of non-reinforced specimens by 73% as against the untreated specimens whereas the strength of the specimens with the fiber content of 2 and 4% lowered by 40 and 35%, respectively. In the compression testing, 5 freezing–thawing cycles decreased the strength of the check non-reinforced specimens by 47% while the decrease in the strength of the reinforced specimens with the fiber content of 2% made 5% as against the check specimens, which corresponded to the freeze resistance grade F200 in compliance with GOST 10060.2-95. The obtained results prove that disperse reinforcement of fine-grained concrete with basalt fiber can increase freezing resistance of concrete and its resilience under bending and compression, which expands application field of concrete.

Keywords

Fiber, basalt fiber, fine-grained concrete, fiber-reinforced concrete, composite, bending and compression strength, freeze resistance.

Issue number: 11
Year: 2018
ISBN:
UDK: 691.322.7
DOI: 10.25018/0236-1493-2018-11-0-56-62
Authors: Alekseev K. N., Kurilko A. S.

About authors: Alekseev K.N., Junior Researcher, e-mail: const1711@mail.ru, Kurilko A.S., Doctor of Technical Sciences, Head of Laboratory, Deputy Director, e-mail: a.s.kurilko@igds.ysn.ru, Chersky Mining Institute of the North, Siberian Branch, Russian Academy of Sciences, 677980, Yakutsk, Republic of Sakha (Yakutia), Russia.

REFERENCES:

1. Alekseev K. N., Kurilko A. S. Perspektivy primeneniya legkogo teplozashchitnogo fibroarmirovannogo tokret-betona [Application prospects for light heat-protective fiber-reinforced shotcrete]. Gornyy informatsionno-analiticheskiy byulleten’. 2017. Special edition 24, pp. 254—263. [In Russ].

2. Borovskikh I. V., Morozov N. M., Galeev A. F. Vliyanie bazal'tovoy fibry na dolgovechnost' betona [Effect of basalt fiber on endurance of concrete]. Innovatsionnoe razvitie sovremennoy nauki. Materialy mezhdunarodnoy nauchno-prakticheskoy konferentsii. Ufa, Izd-vo OOO «Omega Sayns», 2015, pp. 25—27. [In Russ].

3. Afroughsabet V., Ozbakkaloglu T. Mechanical and durability properties of high-strength concrete containing steel and polypropylene fibers. Construction and Building Materials, 2015, Vol. 94, pp. 73—82.

4. Boulekbache B., Hamrat M., Chemrouk M., Amziane S. Flexural behaviour of steel fibre-reinforced concrete under cyclic loading. Construction and Building Materials, 2016, Vol. 126, pp. 253—262.

5. Alekseev K. N., Kurilko A. S., Zakharov E. V. Vliyanie bazal'tovogo volokna (fibry) na vyazkost' i energoemkost' razrusheniya melkozernistogo betona [Influence of basalt fiber on viscosity and energy input of fine-grained concrete destruction]. Gornyy informatsionno-analiticheskiy byulleten’. 2017, no 12, pp. 56—63. [In Russ].

6. Cory H., Hatem M. Seliem, Adel El-Safty, Sami H. Rizkalla Use of basalt fibers for concrete structures.Construction and Building Materials, 2015, Vol. 96, pp. 37—46.

7. Solov'ev V. G., Bammatov A. A., Kukhar' I. D., Nurtdinov M. R. Effektivnost' vzaimodeystviya razlichnykh vidov fibry s betonnoy matritsey [Efficiency of interaction between different fibers and concrete matrix]. Nauka i biznes: puti razvitiya. 2018, no 5, pp. 57—61. [In Russ].

8. Saber F., Mahdi N. Mechanical properties and durability of high-strength concrete containing macro-polymeric and polypropylene fibers with nano-silica and silica fume. Construction and Building Materials, 2017, Vol. 132, pp. 170—187.

9. Akhmed A. A. A., Lesovik R. V., Sopin D. M. Fibrobeton s uglerodnym voloknom na syr'evykh resursakh respubliki Irak [Carbon fiber-reinforced concrete made of Iraqi raw materials]. Vestnik OSN RAASN. 2014, no 13, pp. 63—66. [In Russ].

10. Kozlov S. D., Matyukhina M. A., Abramov N. M., Zakharchenko O. V. Steklofibrobeton [Glass fiber-reinforced concrete]. Innovatsionnoe podkhody v sovremennoy nauke. Materialy I mezhdunarodnoy nauchno-prakticheskoy konferentsii, Moscow, Izd-vo OOO «Internauka», 2017, pp. 9—13.

11. Dobshits L. M. Fiziko-matematicheskaya model' razrusheniya betonov pri poperemennom zamorazhivanii i ottaivanii [Physical-and-mathematical model of concrete failure under alternate freezing and thawing]. Zhilishchnoe stroitel'stvo. 2017, no 12, pp. 30—36. [In Russ].

12. Kurilko A. S., Alekseev K. N., Zakharov E. V., Svinoboev A. K. Issledovanie udel'noy energoemkosti razrusheniya i udarnoy vyazkosti armirovannogo bazal'tovoy fibroy betona pri otritsatel'nykh temperaturakh i posle vozdeystviya tsiklov zamorazhivaniya-ottaivaniya [Analysis of specific destruction energy input and impact viscosity of basalt fiber-reinforced concrete under negative temperatures and after exposure to freezing–thawing cycles], Research report. Yakutsk, IGDS SO RAN, 2018, 31 p. [In Russ].

Subscribe for our dispatch