SET OF GEOPHYSICAL STUDY METHODS FOR HARD MINING WASTE LANDFILLS

Many operating and closed landfills of hard waste in mineral mining are the sources of environmental pollution. Meanwhile, Russia has many such landfills with the expired time of service life. In order to mitigate aggravating effect on nature, it is necessary to arrange systems of gas drainage and infiltrate accumulation, and to determine slope stability of landfills. It is also required to detect pockets of landfill gases and infiltrate to improve efficiency of such systems. The geophysical methods allow effective and fast solution of these objectives. Amongst them, specific place belongs to the current and advanced methods based on tomography. The tomographic measurements, as against the “classical” geophysical approaches, are meant for the analysis of complex-structured two- and three-dimensional media such as waste landfills—complicate and dynamic man-made objects having essentially nonuniform physical properties. The basic geophysical methods to solve the set objectives are seismic tomography and electric tomography. The seismic tomography enables assessment of physical-and-mechanical properties and density of landfills, which is required to determine slope stability of landfills and to locate weakened zones of possible gas pockets. The electric tomography makes it possible to identify zones of infiltrate pockets and hidden voids which can be filled with landfill gases and can induce ground surface subsidence. Physical-and-mechanical properties are assessed based on stable correlations between seismic wave velocities, density, unit weight, internal friction angle and specific cohesion as well as the other indexes of landfil stability. Pockets of infiltrate ad landfill gases are detected based on lower and high values of electric resistivity, respectively. The case studies discussed demonstrate efficiency of geophysical studies implemented at landfills of hard mining waste.

Keywords

Geophysical methods, electric tomography, seismic tomography, hard waste landfills.

Issue number: 11
Year: 2018
ISBN:
UDK: 622+550.83
DOI: 10.25018/0236-1493-2018-11-0-114-120
Authors: Romanov V. V., Malskiy K. S., Poserenin A. I., etc.

About authors: Romanov V.V., Candidate of Technical Sciences, Assistant Professor, Head of Chair, Malskiy K.S., Candidate of Technical Sciences, Assistant Professor, Dean of the Geophysical faculty, e-mail: sabbat@mail.ru, Poserenin A.I., Senior Lecturer, Ivanov A.A., Candidate of Technical Sciences, Assistant Professor, Dronov A.N., Leading Mine Surveyor, ANO «Subsoil Use Audit and Consulting», 105064, Moscow, Russia, Russian State Geological Prospecting University named after Sergo Ordzhonikidzе (MGRI-RSGPU), 117997, Moscow, Russia. Russian Academy of Sciences, 677018, Yakutsk, Russia.

REFERENCES:

1. Artemova A. I. Ispol'zovanie kompleksa geofizicheskikh metodov dlya lineynykh izyskaniy [Use of a set of geophysical methods for route survey]. Interekspo Geo-Sibir'. 2012, vol. 2, no 1, pp. 110—114. [In Russ].

2. Borovskiy M. Ya. Svalochnyy gaz: ekologo-geofizicheskie aspekty [Landfill gas: ecological and geophysical aspects]. Zhurnal ekologii i promyshlennoy bezopasnosti. 2014, no 1—2, pp. 9—12. [In Russ].

3. Kozhonov A. K., Nogaeva K. A., Molmakova M. S. Obzor i klassifikatsiya promyshlennykh otkhodov rudnykh mestorozhdeniy Kyrgyzskoy respubliki [Review and classification of ore mining waste in the Kyrgyz Republic]. Izvestiya Kyrgyzskogo gosudarstvennogo tekhnicheskogo universiteta im. I. Razzakova. 2016, no 4—1 (39), pp. 259—263. [In Russ].

4. Kuprienko P. S., Ashikhmina T. V., Ovchinnikova T. V., Pinchuk M. I. Rekul'tivatsiya zakrytykh poligonov TBO [Reclamation of closed hard waste landfills]. Pozharnaya bezopasnost': problemy i perspektivy. 2017. vol. 1, no 8, pp. 445—447. [In Russ].

5. Mironyuk S. G., Naumenko D. A., Vinda A. A. Primenenie metodov seysmo- i elektrotomografii dlya obnaruzheniya zon povyshennoy treshchinovatosti pri stroitel'stve truboprovodov sposobom naklonno-napravlennogo bureniya v gorno-skladchatoy oblasti [Application of seismic and electric tomography to finding increased fracturing zones in pipelining with inclined direction drilling in mountain folded regions]. Inzhenernye izyskaniya. 2012, no 9, pp. 18—24. [In Russ].

6. Pugin K. G., Ivenskikh O. V. Material dlya rekul'tivatsii poligonov TBO i kar'erov na osnove otkhodov ferrovanadievogo proizvodstva [Reclamation material for hard waste landfills and open pits based on ferrovanadium production rejects]. Fundamental'nye issledovaniya. 2013, no 10—9, pp. 1938—1941. [In Russ].

7. Romanov V. V. Interpretatsiya seysmicheskoy tomografii na primere izucheniya geologicheskogo stroeniya opolznevogo sklona [Interpretation of seismic tomography in terms of studying subsurface geology of land sliding slope]. Razvedka i okhrana nedr. 2015, no 3, pp. 34—37. [In Russ].

8. Romanov V. V., Poserenin A. I., Dronov A. N., Mal'skiy K. S. Obzor geofizicheskikh metodov, primenimykh pri poiske geomekhanicheskikh narusheniy vblizi gornykh vyrabotok [Review of geophysical methods used in detection of geomechanical damage of rocks in the vicinity of underground excavations]. Gornyy informatsionno-analiticheskiy byulleten’. 2016, no 1, pp. 243—248. [In Russ].

9. Romanov V. V., Rakhmatullin I. I., Grokhol'skaya S. A. Opredelenie modeli fiziko-mekhanicheskikh svoystv vskryshnykh porod kar'era pri pomoshchi seysmorazvedki [Determining model of physical and mechanical properties of open pit mine overburden by seismic exploration]. Geoinformatika. 2015, no 2, pp. 63—67. [In Russ].

10. Fomenko N. E., Gaponov D. A. Tekhnologii prostranstvennoy fil'tratsii elektricheskogo polya pri izuchenii tekhnogennykh i prirodnykh ob"ektov [Technology of spatial filtering of electric field in the studies of natural and man-made objects]. Izvestiya vysshikh uchebnykh zavedeniy. Geologiya i razvedka. 2013, no 4, pp. 58—62. [In Russ].

11. Koulakov I. et al. Rapid changes in magma storage beneath the Klyuchevskoy group of volcanoes inferred from time-dependent seismic tomography. Journal of Volcanology and Geothermal Research. 2013. Vol. 263, pp. 75—91.

12. Maślakowski M., Zbiciak A., Józefiak K. Tomografia elektrooporowa jako skuteczna metoda roz-
poznawania nasypów antropogenicznych w warunkach budowy odcinka drogi S8 w okolicy Warszawy. Logistyka. 2015. no 4, pp. 4792—4799, CD2.

13. Sjogren B. (ed.) Shallow refraction seismics. Springer Science & Business Media. 2013.

14. Wyering L. D. et al. Mechanical and physical properties of hydrothermally altered rocks, Taupo Volcanic Zone, New Zealand. Journal of Volcanology and Geothermal Research. 2014. Vol. 288, pp. 76—93.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.