SELECTION AND VALIDATION OF SMALL-DIAMETER DTH AIR HAMMERS

Small diameter drilling is widely used in modern-stage mining. Such holes are employed for exploration, hydrogeological, seismic, structural, blasting and observation purposes, as well as for rock bolting. Current technologies of underground mining often require small-diameter drilling. This article reasons in favor of engineering rotary–percussion machines for drilling holes 40–60 mm in diameter. Towards this objective, a drilling rig with a DTH air hammer is designed and manufactured. The structural layout of the small-diameter air hammer drill with the highest blow energy is substantiated. The air hammer is debugged using mathematical model and advanced software. The penetration rates of the small-diameter air hammer in rocks of different hardness are obtained in the experimental tests. The ranges of rotation speed and feed force of drilling rod on the bottomhole, such that the maximum penetration rate is achieved, are determined.

Keywords

Rotary–percussion drilling, DTH air hammer, structural layout, experimental tests, brassboard.

Issue number: 11
Year: 2018
ISBN:
UDK: 622.233
DOI: 10.25018/0236-1493-2018-11-0-145-153
Authors: Shahtorin I. O.

About authors: Shahtorin I.O., Junior Researcher, e-mail: Scorpion22@bk.ru, Chinakal Institute of Mining of Siberian Branch of Russian Academy of Sciences, 630091, Novosibirsk, Russia.

REFERENCES:

1. Klishin V. I., Repin A. A., Kokoulin D. I., Kubanychbek B. Sozdanie spetsial'nykh burovykh stankov dlya bureniya skvazhin diametrom 45 mm v krepkikh porodakh [Engineering special Ø 45 mm drilling rigs for hard rocks]. Teoriya mashin i rabochikh protsessov. The collection of works. Bishkek, 2013, pp. 195—201.

2. Sudnishnikov B. V. Issledovanie i konstruirovanie pnevmaticheskikh mashin udarnogo deystviya [Analysis and design of pneumatic percussion machines], Novosibirsk, Nauka, 1985, 135 p.

3. Shakhtorin I. O., Timonin V. V. Dovodka mashin udarnogo deystviya pri pomoshchi sovremennogo programmnogo obespecheniya [Debugging of percussion machines using advanced software]. Sbornik materialov Vserossiyskoy nauchno-tekhnicheskoy konferentsii s mezhdunarodnym uchastiem «Sovremennye problemy v gornom dele i metody modelirovaniya gorno-geologicheskikh usloviy pri razrabotke mestorozhdeniy poleznykh iskopaemykh». Kemerovo, Izd-vo KuzGTU, 2015. [In Russ].

4. Aleksandrov E. V., Sokolinskiy V. B. Prikladnaya teoriya i raschet udarnykh sistem [Applied theory and calculation of percussive systems], Moscow, Nauka, 1969, 356 p.

5. Lipin A. A., Timonin V. V., Tanayno S. A. Sovremennye pogruzhnye udarnye mashiny dlya bureniya skvazhin. Katalog-spravochnik [Modern down-the-hole percussion drilling machines. Repertory catalog. Catalogue-Handbook], Saint-Petersburg, Gornaya tekhnika, 2006, pp. 116—123.

6. Repin A. A., Kokoulin D. I., SHakhtorin I. O. Sozdanie ispolnitel'nogo organa dlya bureniya skvazhin malogo diametra v krepkikh porodakh [Creation of bits for small-diameter drilling in hard rocks]. Izvestiya vuzov. Gornyy zhurnal. 2015, no 5, pp. 102—107. [In Russ].

7. Karpov V. N., Shakhtorin I. O. K voprosu issledovaniya prichin vozniknoveniya defektov elementov konstruktsii pogruzhnykh pnevmoudarnikov [Analysis of causes of defects in structural elements of down-the-hole air hammer drills]. Sbornik trudov Vserossiyskoy nauchnoy konferentsii dlya studentov, aspirantov i molodykh uchenykh s elementami nauchnoy shkoly «Gornyatskaya smena-2015». Novosibirsk, Izd-vo IGD SO RAN, 2015, 288 p. [In Russ].

8. Kolesov Yu. B. Ob"ektno-orientirovannoe modelirovanie slozhnykh dinamicheskikh sistem [Object-oriented modeling of complex dynamic systems], Saint-Petersburg, Izd-vo SPbGPU, 2004, 240 p.

9. Nikitin K. D. Nelineynyy metod konechnykh ob"emov dlya zadach mnogofaznoy fil'tratsii [Nonlinear finite volume method for multi-phase flow problems], Matematicheskoe modelirovanie. 2010, Vol. 22, no 11, pp. 131—147. [In Russ].

10. Khrutskiy A. A., Oshchepkov V. S. Komp'yuternoe modelirovanie rabochego tsikla pnevmaticheskogo vibratora bezudarnogo deystviya [Computer-aided modeling of operating cycle of shock-free air-operated vibrator]. Mezhdunarodnaya nauchno-tekhnicheskaya internet-konferentsiya «Sovremennye vibratsionnye tekhnologii, mashiny, oborudovanie i dinamicheskie protsessy v nikh», Vinnitsa, 28-30 November 2016, http://vibrokonf.vntu.edu.ua/Articles%202016/KR_GR.pdf [In Russ].

11. Anderson W. K., Thomas J. L., van Leer B. Comparison of Finite Volume Flux Vector Splittings for the Euler Equations. AIAA J. 1986. Vol. 24, No 9. P. 1453—1460.

12. Möller M., Charypar D.,Gross M. Particle-based fluid simulation for interactive applications. Proceedings of the 2003 ACM SIGGRAPH. Eurographics symposium on Computer animation. Aire-la-Ville, 2003. Р. 154—159.

13. Monaghan J. J. Smoothed particle hydrodynamics. Annual Review of Astronomy and Astrophysics. Clayton, 1992. Р. 543—574.

14. Weiss J. M., Maruszewski J. P., Smith W. A.Imlicit Solution of Preconditioned Navier-Stokes Equations Using Algebraic Multigrid. AIAA J. 1999. Vol. 37, No. 1. P. 29—36.

Subscribe for our dispatch