PROCEDURE FOR SELECTING DYNAMIC GROUND SUPPORT FOR ROCK BURSTING MINING CONDITIONS

The article presents the results of the studies aimed to develop a procedure for selecting dynamic ground support for mining under rockbursting conditions. The dynamic ground support means a system capable to withstand loads generated by dynamic phenomena of rock pressure. Such support system includes rock bolts and surface reinforcement elements having increased load-bearing capacity, capable to deform but not break. One of the methods to abate rockburst aftereffects is the dynamic support installation to withstand high-magnitude phenomena of rock pressure. The optimal dynamic support should be able to prevent rock fall under rockbursting while being comparatively inexpensive and readily installable. The support selection procedure presented in this article is recommended for mining operations in hard rock mass under rockburst hazard. Different kinds of rock bolts and surface reinforcement elements are analyzed at the stage of mine planning and design from the viewpoint of energy absorption and deformability. The proposed approach is recommended for the dynamic ground support design for various systems of mining—open stoping, stoping with backfilling and mining with caving. In difficult ground conditions, in case of increased rock pressure, abundant inflow of ground water, or heavily jointed rock mass, the ground support design should be adjusted based on the geotechnical audit of rocks and using dedicated programs.

Keywords

Rock burst, rock pressure, seismic event, dynamic ground support, energy loading, energy absorption, support deformation.

Issue number: 12
Year: 2018
ISBN:
UDK: 622.272
DOI: 10.25018/0236-1493-2018-12-0-5-12
Authors: Eremenko V. A., Lushnikov V. N.

About authors: Eremenko V.A., Doctor of Technical Sciences, Professor of Russian Academy of Sciences, Director of the Research Center «Application of Geomechanics and Mining of Convergent Technologies», Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail: prof.eremenko@gmail.com, Lushnikov V.N., Chief Geomechanic, e-mail: LushnikovVN@polyus.com, LLC «UK Polus», 123104, Moscow, Russia.

REFERENCES:

1. Kaiser P. K., McCreath D. R., Tannant D. D. Canadian Rock burst Support Handbook. CAMIRO, Sudbury, 1996. 324 pp.

2. Lushnikov V. N., Eremenko V. A., Sendi M. P., Kosyreva M. A. Vybor ankernoy krepi dlya vyrabotok, proydennykh v shakhtakh, sklonnykh k gornym udaram [Selection of rock bolting design for mines in rockbursting conditions], Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017, no 3, pp. 86—95. [In Russ].

3. Eremenko V. A., Esina E. N., Semenyakin E. N. Tekhnologiya operativnogo monitoringa napryazhenno-deformirovannogo sostoyaniya razrabatyvaemogo massiva gornykh porod [Technology of operational stress state monitoring in rocks under mining], Gornyy zhurnal. 2015, no 8, pp. 42—47. [In Russ].

4. Lushnikov V. N., Sendi M. P., Eremenko V. A., Kovalenko A. A., Ivanov I. A. Metodika opredeleniya zony rasprostraneniya povrezhdeniya porodnogo massiva vokrug gornykh vyrabotok i kamer s pomoshch'yu chislennogo modelirovaniya [Procedure to determine extent of damaged rock zones around stopes and rooms using numerical modeling], Gornyy zhurnal. 2013, no 12, pp. 11—16. [In Russ].

5. Eremenko V. A. Kursy podgotovki geomekhanikov (geotekhnikov), geologov i gornykh inzhenerov po programmam Map3D i Rocscience (Dips, RocData, Unwedge) [Training courses on Map3D and Rocscience programs for geomechanics (geotechnical engineers), geologists and mining engineers (Dips, RocData, Unwedge)], Gornyy zhurnal, no 2 — 2018, 2 p. [In Russ].

6. Potvin Y., Wesseloo J., Heal D. An interpretation of ground support capacity submitted to dynamic loading, Mining Technology. 2010. Vol. 119, No. 4.

7. Campbell K. W. Near-source attenuation of peak horizontal acceleration, Bull. Seis-mol. Soc. Am., 1981. 71, (6), 2039—2070.

8. Potvin Y., Wesseloo J. Towards an understanding of dynamic demand on ground support, Journal of the Southern African Institute of Mining and Metallurgy, 2013, vol. 113, no 12, pp. 913—922.

9. Bucher R., Cala M., Zimmermann A., Balg C., Roth A. Large scale field tests of high-tensile steel wire mesh in combination with dynamic rock bolts subjected to rock burst loading. 7th Int. Symp. on Ground Support in Mining and Underground construction. Perth, Australia, 13—15 May 2013.

10. Morton E. C., Thompson A. G., Villaescusa E. Static testing of shotcrete and membranes for mining applications. 6th Int. Symp. on Ground Support in Mining and Civil Engineering Construction. SAIMM. 2008.

11. Morton E. C., Villaescusa E., Thompson A. G. Determination of energy absorption capabilities of large scale shotcrete panels. XI Int. Conf. Shotcrete for Underground Support. Davos, June 7—10, 2009.

12. Player J. R., Morton E. C., Thompson A. G., Villaescusa E. Static and dynamic testing of steel wire mesh for mining applications of rock surface support. 6th Int. Symp. on Ground Support in Mining and Civil Engineering Construction. SAIMM. 2008.

13. Balg C., Roduner A., Geobrugg A. G. Ground support applications. Int. Ground Support Conf. AGH University. Lungern, Switzerland, 11—13 September 2013.

14. Louchnikov V. N., Eremenko V. A., Sandy M. P. Ground support liners for underground mines: energy absorption capacities and costs, Eurasian Mining. 2014. No 1.

15. Louchnikov V., Sandy M., Watson O., Eremenko V., Orunesu M. An overview of surface rock support for deformable ground conditions. 12th Underground Operators’ Conference. Adelaide 2014. 15—18 March 2014, Australia. Paper Number: 173.

16. Neugomonov S. S., Volkov P. V., Zhirnov A. A. Kreplenie slaboustoychivykh porod usilennoy kombinirovannoy krep'yu na osnove friktsionnykh ankerov tipa SZA [Reinforcement of instable rocks by combination support system based on expandable friction rock bolts], Gornyy zhurnal. 2018, no 2, pp. 31—34. [In Russ].

17. Zubkov A. A., Latkin V. V., Neugomonov S. S., Volkov P. V. Perspektivnye sposoby krepleniya gornykh vyrabotok na podzemnykh rudnikakh [Promising methods to support underground mines], Gornyy infor-
matsionno-analiticheskiy byulleten’
. 2014. СВ S1-1, pp. 106—117. [In Russ].

18. Kalmykov V. N., Volkov P. V., Latkin V. V. Obosnovanie parametrov stalepolimernoy ankernoy krepi pri provedenii opytno-promyshlennykh ispytaniy v usloviyakh Saf'yanovskogo podzemnogo rudnika [Substantiation of fully grouted rock bolting design for full-scale trial in Safianovsky mine], Aktual'nye problemy gornogo dela. 2016, no 2, pp. 27—35. [In Russ].

19. Kalmykov V. N., Latkin V. V., Zubkov A. A., Neugomonov S. S., Volkov P. V. Tekhnologicheskie osobennosti vozvedeniya usilennoy kombinirovannoy krepi na podzemnykh rudnikakh [Technological features of installation of combination ground support and surface reinforcement in underground mines], Gornyy informatsionno-analiticheskiy byulleten’. 2015. СВ 15, pp. 63—69. [In Russ].

20. Myaskov A. V. Metodologicheskie osnovy ekologo-ekonomicheskogo obosnovaniya sokhraneniya estestvennykh ekosistem v gorno-promyshlennykh regionakh [Methodological framework for economic and ecological justification of preservation of natural eco-systems in mining regions], Gornyy informatsionno-analiticheskiy byulleten’. 2011, no 1, pp. 399—401. [In Russ].

21. Myaskov A. V. Sovremennye ekologo-ekonomicheskie problemy nedropol'zovaniya [Current economic and ecological problems in the subsoil use], Gornyy informatsionno-analiticheskiy byulleten’. 2014, no 2, pp. 157—160. [In Russ].

22. Timonin V. V., Kondratenko A. S. Process and measuring equipment transport in uncased boreholes, J. Min. Sci. 2015 Vol 51, No 5, pp. 1056—1061.

Mining World Russia
Subscribe for our dispatch