For the extraction of mineral reserves of Udachnaya Pipe under the open pit bottom, the system of one-stage caving under a safety cushion is accepted. To ensure the mine safety, the cushion should preserve looseness within the whole mine life period. Developed for the analysis of ice accumulation, the general mathematical model of heat and mass transfer takes into account three interfering processes running in the safety rock cushion, namely, seepage of moisture from atmospheric precipitation, leak of moist air and heat transfer during phase transformations of moisture. It is analyzed how atmospheric precipitations and mine air affect the process of ice accumulation in the safety cushion. The mathematical model allows calculating ice formation in voids of the cushion owing water seepage and condensation of moist mine air. The model efficiency is discussed in terms of the calculations for a rock safety cushion 30 m thick. The calculations are performed for readily and weakly permeable rocks. For the readily permeable rocks, the maximum ice content is 0.1 at a depth of 1.5 m in the first summer and 0.15 at a depth of 2.2 m in the first winter. In the second summer, the maximum ice content is also observed at the depth of 2.2 m; moreover the ice content grows, which blocks pores. In case of the weakly permeable rocks, ice accumulates at a depth of 1.9 m. At the bottom of the cushion, rocks gradually thaw under leakage of air from the mine irrespectively of the season. In addition, ice accumulates in the cushion owing to condensation of moisture from the mine air. The ice content curve contains a characteristic “hump” which drifts toward the upper boundary of the cushion with time. The hump drifting is less intensive in the weakly permeable rocks. The developed mathematical models of heat and mass transfer and the programs for calculating temperature and moisture content of the safety cushion under moisture seepage can be used to predict rate of adfreesing in rocks and to control safe and uniform subsidence of the cushion. The calculation results will help develop guidelines on making safety cushions, maintaining their year-round flowability and permeability, as well as improving safety of underground extraction of diamond pipe reserves.


Rock safety cushion, hybrid open pit/underground mining, permafrost region, phase transformations, moisture seepage and air leak, temperature, mathematic modeling.

Issue number: 12
Year: 2018
UDK: 622.272: 536.24
DOI: 10.25018/0236-1493-2018-12-0-39-47
Authors: Neustroev A. P., Khokholov Yu. A.

About authors: Neustroev A.P., Graduate Student, e-mail:, Khokholov Yu.A., Doctor of Technical Sciences, Leading Researcher, e-mail:, Chersky Mining Institute of the North, Siberian Branch, Russian Academy of Sciences, 677018, Yakutsk, Republic of Sakha (Yakutia), Russia.


1. Sokolov I. V., Smirnov A. A., Antipin Yu. G., Nikitin I. V., Tishkov M. V. Obosnovanie tolshchiny predokhranitel'noy podushki pri otrabotke podkar'ernykh zapasov trubki «Udachnaya» sistemami s obrusheniem [Substantiation of safety cushion thickness for mining Udachnaya Pipe reserves under the open pit bottom by systems with caving]. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2018, no 2, pp. 52—62. [In Russ].

2. Zarovnyaev B. N. Shubin G. V., Kurilko A. S., Khokholov Yu. A. Prognoz temperaturno-vlazhnostnogo sostoyaniya predokhranitel'noy podushki pri otrabotke podkar'ernykh zapasov rudy v usloviyakh kriolitozony [Prediction and temperature of safety cushion under open pit bottom in the conditions of permafrost], Gornyy zhurnal. 2016, no 9, pp. 33—36. [In Russ].

3. Kaymonov M. V., Khokholov Yu. A. Matematicheskoe modelirovanie temperaturno-vlazhnostnogo rezhima bloka otbitoy rudy rudnikov Severa [Mathematical modeling of temperature and moisture content of broken ore blocks in mines]. Nauka i obrazovanie. 2010, no 1, pp. 27—32. [In Russ].

4. Hansson K., Simunek J., Mizoguchi M., Lundin L.-C., van Genuchten M. Th. Water flow and Heat transport in frozen soil: Numerical solution and freeze-thaw applications. Vadose zone J. 2003. Vol. 3, pp. 693—704.

5. Karra S., Painter S. L., Lichtner P. C. Three-phase numerical model for subsurface hydrology in permafrostaffected regions (PFLOTRAN-ICEv1.0). The Cryosphere. 2014. Vol. 8, pp. 1935—1950.

6. Painter S. Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation, and applications. Computational Geosciences. 2011. Vol. 15(1), pp. 69—85.

7. Zhou Y., Zhou G. Numerical simulation of coupled heat-fluid transport in freezing soils using finite volume method. Heat and Mass Transfer. 2010. Vol. 46, pp. 989—998.

8. Rawlins M. A., Nicolsky D. J., McDonald K. C., Romanovsky V. E. Simulating soil freeze thaw dynamics with animprovedpan-Arctic water balance model. Journal of Advances in Modeling Earth Systems. 2013. Vol. 5. 1—17. DOI: 10.1002/jame.20045.

9. Wicky J., Hauck C. Numerical modelling of convective heat transport by air flow in permafrost talus slopes. The Cryosphere. 2017. Vol. 11, pp. 1311—1325.

10. Scott L. Painter Three-phase numerical model of water migration in partially frozen geological media: model formulation, validation and applications. Computational Geosciences. 2011. Vol. 15, pp. 69—85. DOI: 10.1007/s10596-010-9197-z.

11. Motovilov Yu. G. Chislennoe modelirovanie protsessa infil'tratsii vody v merzlye pochvy [Numerical modeling of water seepage in frozen soil], Meteorologiya i gidrologiya. 1977, no 9, pp. 67—75. [In Russ].

12. Rabochev I. S., Reks L. M., Pyagay Eh. T., Yakirevich A. M. Primenenie modeli teplo-vlagoperenosa v pochvogruntakh dlya rascheta summarnogo vodopotrebleniya sel'skokhozyaystvennykh kul'tur [Application of model of heat and moisture transfer in soil for calculating total water consumption for agricultural crops]. Pochvovedenie. 1981, no 1, pp. 50—59. [In Russ].

13. Leybenzon L. S. Dvizhenie prirodnykh zhidkostey i gazov v poristoy srede [Flow of natural fluids and gases in porous medium], Moscow, Gosudarstvennoe izdatel'stvo tekhniko-teoreticheskoy literatury, 1947, 244 p.

14. Khyamyalyaynen V. A., Ponasenko L. P., Burkov Yu. V., Frankevich G. S., Zherebtsov V. A. Tamponazh obrushennykh porod [Caved rock plugging], Kemerovo, KuzGTU, 2000, 107 p.

15. Larikov N. N. Teplotekhnika [Thermotechnics], Moscow, Stroyizdat, 1985, 432 p.

16. Kutateladze S. S. Osnovy teorii teploobmena [Theoretical framework of heat exchange], Moscow, Atomizdat, 1979, 416 p.

Mining World Russia
Subscribe for our dispatch