FACE DEFORMATION IN TUNNELING IN THE ZONE OF STRUCTURAL AND MECHANICAL HETEROGENEITY

Engineering practice has a number of idealized model representations to describe deformation of soil. In the meanwhile, an idealized representation involves a series of assumptions and limited ranges of applicability. For this reason, depending on a problem, an engineer should use simulation models with the constraints and assumptions such that to have lesser influence on the calculation data for a real medium. At the present date, there are many different models available for the description of the behavior of soil under loading. The common disadvantage of the most models is neglecting anisotropy of strength and deformation characteristics of materials. The aim of this study is to assess the influence exerted by the anisotropy of deformation of a soil mass with a structural and mechanical heterogeneity on the stress state in the face area of a tunnel. The geomechanical model results on deformation of the tunnel face when approaching the structural and mechanical heterogeneity in the isotropic and transversely isotropic soil masses are compared. The influence of the structural and mechanical heterogeneity on the face front deformation is assessed.

Keywords

Isotropic soil mass, structural and mechanical heterogeneity, transversely anisotropic mass, tunnel face stability, stratified mass, numerical modeling, finite element method.

Issue number: 12
Year: 2018
ISBN:
UDK: 624.191.22
DOI: 10.25018/0236-1493-2018-12-0-48-56
Authors: Alekseev A. V.

About authors: Alekseev A.V., Graduate Student, e-mail: a1exeev@yandex.ru, Saint Petersburg Mining University, 199106, Saint-Petersburg, Russia.

REFERENCES:

1. Anagnostou G., Schuerch R. Tunnel face stability and tunnelling induced settlements under transient conditions. 2016.

2. Graziani A. Face stability control for EPB tunnels in a non homogeneous till formation with highly permeable layers. Geotechnical Aspects of Underground Construction in Soft Ground. 2012, pp. 387—394.

3. Hisatake M. Effects of the ring-cut excavation method on the restraint of displacements ahead of a tunnel face. Tunnelling and Underground Space Technology. 2009.

4. Hisatake M. Continuous field based upper bound analysis for three-dimensional tunnel face stability in undrained clay. Computers and Geotechnics. 2018. No June (94), pp. 207—213.

5. Wang C. Study on stability of full clay excavation face in boring of slurry shield. Tunnel construction. 2015. No 7 (35), pp. 642—649.

6. Zhang C., Han K., Zhang D. Face stability analysis of shallow circular tunnels in cohesive-frictional soils. Tunnelling and Underground Space Technology. 2015. (50), pp. 345—357.

7. Bulychev N. S. Teoriya rascheta podzemnykh sooruzheniy [Theory for calculation of underground structures], Saint-Petersburg, 1997, 9—11 p.

8. Karasev M. A. Prognoz geomekhanicheskikh protsessov v sloistykh porodnykh massivakh pri stroitel'stve podzemnykh sooruzheniy slozhnoy prostranstvennoy konfiguratsii v usloviyakh plotnoy gorodskoy zastroyki [Prediction of geomechanical processes in layered rock mass under complex configuration underground construction in conditions of compact urban development], Doctor’s thesis, Saint-Petersburg, Izd-vo SPbGU, 2017.

9. Merkin V. E., Kolin D. I., Sarabeev V. F., Starchevskaya L. L., Khazanov S. Yu. Metodicheskie rekomendatsii po raschetu vremennoy krepi tonnel'nykh vyrabotok [Guidelines on temporal ground support design in tunnels], Moscow, Ministerstvo transportnogo stroitel'stva SSSR, 1984.

10. Protosenya A. G. Opredelenie fiziko-mekhanicheskikh svoystv proterozoyskikh glin dlya vypolneniya geotekhnicheskikh raschetov pri razrabotke rabochey dokumentatsii po ob"ektu: «Stroitel'stvo Frunzenskogo radiusa za stantsiyu «Mezhdunarodnaya» do stantsii «Yuzhnaya», vklyuchaya proektirovanie [ Determination of physical and mechanical properties of Proterozoic soil in engineering design in preparation of project paperwork for: Construction of the Frunze ray from Mezhdunarodnaya to Yuzhnaya Stations, including design and planning], Saint-Petersburg, 2015.

11. Sokolovskiy V. V. Teoriya plastichnosti [Theory of plasticity], Moscow, Vysshaya shkola, 1969, 608 p.

12. Suprun I. K. Prognoz prostranstvennogo napryazhenno-deformirovannogo sostoyaniya gruntovogo massiva pri prokhodke tonneley tekhnologiey s prigruzom zaboya [Prediction of three-dimensional stress state in soil under tunneling with additional loading on face], Zapiski Gornogo instituta. 2012, no 196, pp. 94—100.

13. Cherdantsev N. V. Geomekhanicheskoe sostoyanie massiva gornykh porod vokrug vyrabotki i geologicheskogo narusheniya [Geomechanical behavior of rock mass around an underground excavation and geological discontinuity], Gornyy informatsionno-analiticheskiy byulleten’. 2015, no 12, pp. 52—58. [In Russ].

14. Cherdantsev N. V. Issledovanie sostoyaniya anizotropnogo massiva gornykh porod v okrestnosti vyrabotki, proydennoy vblizi diz"yunktivnogo narusheniya [Analysis of state of an anisotropic rock mass around an excavation nearby a disjunction], Promyshlennaya bezopasnost' i geomekhanika. 2017, no 2, pp. 34—40. [In Russ].

15. Cherdantsev N. V., Cherdantsev S. V. Geomekhanicheskoe sostoyanie massiva gornykh porod, vmeshchayushchego vyrabotku i diz"yunktivnoe narushenie [Geomechanical behavior of rock mass enclosing an excavation and a disjunction], Vestnik Kuzbasskogo gosudarstvennogo tekhnicheskogo universiteta. 2014, no 6, pp. 3—12. [In Russ].

Mining World Russia
Subscribe for our dispatch