GEOMECHANICAL MODELING OF DEEP-LEVEL MINING UNDER DIFFICULT GEOLOGICAL AND GEODYNAMIC CONDITIONS

In spotlight are four feasible schemes of mining at Level +10 m In Kirov Mine of Apatit at the Kukisvumchorr and Yukspor deposits. The developed three-dimensional geomechanical model embraces rock mass holding the listed deposits. The model includes basic geological, geomechanical and geotechnical factors. The critical influence on stress state of rock mass in Kirov Mine is exerted by: in-situ stress state of rocks, properties of enclosing rocks and ore body, tectonic faults, overhanging of overburden above ore bodies and blasting profile of the over-lying horizon. The multivariate stress state modeling in rock mass under successive extraction of ore reserves from Level +10 m is carried out in three-dimensional formulation using the finite element method and SigmaGT software product developed at the Mining Institute of the Kola Science Center, Russian Academy of Sciences. The basic stress redistribution patterns are determined for different mining scenarios. The zones of the compression stress concentration and relaxation, as well as anticipated increased geodynamic hazard are detected for different stages of mining. The riskiness of approaching a thick geodynamically active structure (Saam fault) in the course of extraction of ore reserves from a block pillar is demonstrated. Based on the research finings, the geomechanically safest variant of mining at Level +10 m involves geological exploration in the zone of the Saam fault and mining advance in either side of the fault using the systems of sublevel caving.


The studies were performed in the framework of the research topics of the 0226-2016-0004_GoI «Study of the processes of energy exchange in the geological environment of mining systems for providing geodynamic safety of the mining development of the North-West Arctic region» with the financial support of JSC «Apatite».

Keywords

Stress state, geomechanical forecast, numerical modeling, underground mining mining, rockburst-hazardous deposits, geodynamically active structures.

Issue number: 12
Year: 2018
ISBN:
UDK: 622.831
DOI: 10.25018/0236-1493-2018-12-0-65-73
Authors: Semenova I. E., Avetisian I. M., Zemtsovskiy A. V.

About authors: Semenova I.E., Candidate of Technical Sciences, Leading Researcher, e-mail: innas@goi.kolasc.net.ru, Avetisian I.M., Candidate of Technical Sciences, Senior Researcher, e-mail: ivanavetisyan@yandex.ru, Zemtsovskiy A.V., Candidate of Technical Sciences, Senior Researcher, e-mail: zemtsovskiy@yandex.ru, Mining Institute — Subdivision of the Federal Research Centre «Kola Science Centre of the Russian Academy of Sciences» (Mining Institute KSC RAS), 184209, Apatity, Russia.

REFERENCES:

1. Turchaninov I. A., Markov G. A., Ivanov V. I., Kozyrev A. A. Tektonicheskie napryazheniya v zemnoy kore i ustoychivost' gornykh vyrabotok [Tectonic stresses in the earth crust and stability of underground excavations], Leningrad, Nauka, 1978, 256 p.

2. Kozyrev A. A., Semenova I. E., Avetisyan I. M. Geomekhanicheskoe obosnovanie vyemki zapasov glubokikh gorizontov Kukisvumchorrskogo mestorozhdeniya [Geomechanical assessment of mining conditions at deep levels of the Kukisvumchorr deposit], Gornyy informatsionno-analiticheskiy byulleten’. 2017, no 4, pp. 143—155. [In Russ].

3. Kozyrev A. A., Semenova I. E., Zhuravleva O. G., Panteleev A. V. Otsenka geodinamicheskoy i seysmicheskoy situatsii v rayone Saamskogo razloma [Geodynamic and seismic assessment of the Saam fault zone], Gornyy informatsionno-analiticheskiy byulleten’. 2017, no 4, pp. 247—258. [In Russ].

4. Singh G. S.P., Singh U. K. A numerical modeling approach for assessment of progressive caving of strata and performance of hydraulic powered support in longwall workings. Computers and Geotechnics, Vol. 36, Issue 7, September 2009, pp. 1142—1156.

5. Hidalgo K. P., Nordlund E. Failure process analysis of spalling failure — Comparison of laboratory test and numerical modelling data. Tunnelling and Underground Space Technology, Vol. 32, November 2012, pp. 66—77.

6. Pan P., Feng X. Numerical study on coupled thermo-mechanical processes in Äspö Pillar Stability Experiment. Journal of Rock Mechanics and Geotechnical Engineering, Vol. 5, Issue 2, April 2013, pp. 136—144.

7. Stead D., Coggan J. S., Elmo D., Yan M. Modelling Brittle Fracture in Rock Slopes — Experience Gained and Lessons Learned. Slope Stability 2007, pp. 239—252.

8. Kozyrev A. A., Semenova I. E., Shestov A. A. Metodika ekspertnoy otsenki geomekhanicheskogo sostoyaniya udaroopasnykh uchastkov rudnykh mestorozhdeniy [Expert estimation procedure of geomechanical behavior in rockburst-hazardous area of ore deposits], Innovatsionnye tekhnologii i sovremennye metody inzhenernogo obespecheniya gorno-obogatitel'nogo proizvodstva. Apatity, 2010, pp. 17—20. [In Russ].

9. Federal'nye normy i pravila v oblasti promyshlennoy bezopasnosti «Pravila bezopasnosti pri vedenii gornykh rabot i pererabotke tverdykh poleznykh iskopaemykh». Prikaz Rostekhnadzora ot 11 dekabrya 2013 g, no 599 [Federal Norms and Regulations on Industrial Safety: Safety Rules for Solid Mineral Mining and Processing. Order of Rostekhnadzor of December 11, 2013, no 599].

10. Ukazaniya po bezopasnomu vedeniyu gornykh rabot na mestorozhdeniyakh, sklonnykh i opasnykh po gornym udaram (Khibinskie apatit-nefelinovye mestorozhdeniya) [Guidelines on safe mining in rockburst-hazardous conditions (Khibiny apatite–nepheline deposits)], Apatity-Kirovsk, 2010, 117 p.

Mining World Russia
Subscribe for our dispatch