The article presents the procedure to plot failure envelope and analyze physical and mechanical properties of in-situ rock mass using RockData software toolkit. General information is given for the commonly used strength criteria of Mohr–Coulomb and Hoek–Brown. The Hoek–Brown criterion parameters are discussed, as well as the purpose and the quantitative and qualitative estimation of these parameters using Hoek’s classification tables and diagrams is described. The criterion is determined based on the physical and mechanical properties of an intact rock mass; then, three deteriorating factors are included from the rock mass quality characteristic. While modeled, an intact rock mass is exposed both to natural and man-mad external effects. As a result, the rock mass strength characteristics included in the strength criterion worsen (uniaxial compressive strength σc, geological strength index GSI, material constant of intact rock mass mi, disturbance factor D and deformation modulus Ei) and approach properties of in-situ rock mass. The article describes a case study of calculating physical–mechanical properties and plotting failure envelope for enclosing rock mass of Taimyr gabbro–diorite mine with regard to local geology and structure. The equivalent Mohr–Coulomb parameters (cohesion с' and internal friction angle φ'), strength characteristics of rock mass (tensile strength, uniaxial compression, triaxial compression) and the modulus of deformation are found, as well as the type of failure is determined from Mogi’s line.


Failure envelope, Hoek–Brown and Mohr–Coulomb strength criteria, geological strength index GSI, principal stresses, shear and normal stresses, rock mass, gabbro–dolerite.

Issue number: 12
Year: 2018
UDK: 622.272
DOI: 10.25018/0236-1493-2018-12-0-92-101
Authors: Khazhyylay Ch. V., Eremenko V. A., Kosyreva M. A., Yanbekov A. M.

About authors: Khazhyylay Ch.V., Student, e-mail:, Eremenko V.A., Doctor of Technical Sciences, Professor of Russian Academy of Sciences, Director of the Research Center «Application of Geomechanics аnd Mining of Convergent Technologies», Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail:, Kosyreva M.A., Student, e-mail:, Yanbekov A.M., Student, e-mail:, Peoples’ Friendship University of Russia (RUDN University), Engineering Academy, 117198, Moscow, Russia.


1. Eremenko V. A., Aynbinder I. I., Patskevich P. G., Babkin E. A. Otsenka sostoyaniya massiva gornykh porod na rudnikakh ZF OAO «GMK «Noril'skiy nikel'» [Rock mass assessment in mines of the Polar Division of Norilsk Nickel MMC], Gornyy informatsionno-analiticheskiy byulleten’. 2017, no 1, pp. 5—17.

2. Lushnikov V. N., Sendi M. P., Eremenko V. A., Kovalenko A. A., Ivanov I. A. Metodika opredeleniya zony rasprostraneniya povrezhdeniya porodnogo massiva vokrug gornykh vyrabotok i kamer s pomoshch'yu chislennogo modelirovaniya [Procedure to determine extent of damaged rock zones around stopes and rooms using numerical modeling], Gornyy zhurnal. 2013, no 12, pp. 5—17.

3. Protosenya A. G., Verbilo P. E. Otsenka prochnosti blochnogo massiva metodom chislennogo modelirovaniya [Strength estimation in blocky rock mass by the numerical modeling method], Izvestiya vysshikh uchebnykh zavedeniyGornyy zhurnal. 2016, no 4, pp. 47—54.

4. Bahrani N., Hadjigeorgiou J. Influence of Stope Excavation on Drift Convergence and Support Behavior: Insights from 3D Continuum and Discontinuum, Models Rock Mechanics and Rock Engineering. 2018. pp. 1—19.

5. Paul A., Murthy V. M. S. R., Prakash A., Singh A. K. Estimation of rock load in development workings of underground coal mines. A modified RMR approach current science, 114(10), 2018. pp. 2167—2174.

6. Zertsalov M. G. Geomekhanika [Geomechanics], Moscow, NIU MGSU, 2015, 105 p.

7. Hoek E., Carter T. G, Diederichs M. S. Quantification of the Geological Strength Index Chart. 2013.

8. Hoek E., Martin C. D. Fracture initiation and propagation in intact rock. A review, Journal of Rock Mechanics and Geotechnical Engineering xxx (2014) 1—14.

9. Barton N. Application of Q-System and Index Tests to Estimate Shear Strength and Deformability of Rock Masses. Workshop on Norwegian Method of Tunneling. New Delhi, 1993, pp. 66—84.

10. Kuz'min E. V., Svyatetskiy V. S., Starodumov A. V., Ioffe A. M., Velichko D. V. Opredelenie parametrov geomekhanicheskogo sostoyaniya porodnogo massiva na konturakh vyemochnykh kamer [Determination of geomechanical parameters of rocks at the boundaries of stopes], Gornyy informatsionno-analiticheskiy byulleten’. 2014, no 12, pp. 177—186.

11. Shahi Sooq H., Shahbazi K. The best failure criteria with an analytical model for underbalanced drilling. 2013.

12. Eremenko V. A., Aynbinder I. I., Marysyuk V. P., Nagovitsin Yu. N. Razrabotka instruktsii po vyboru tipa i parametrov krepi vyrabotok rudnikov Talnakha na osnove kolichestvennoy otsenki sostoyaniya massiva [Development of guidelines for selecting ground support design for Talnakh mines based on evaluation of rock mass quality], Gornyy zhurnal. 2018, no 10.

13. Neugomonov S. S., Volkov P. V., ZHirnov A. A. Kreplenie slaboustoychivykh porod usilennoy kombinirovannoy krep'yu na osnove friktsionnykh ankerov tipa SZA [Improved combination support of weakened rocks using expandable friction rock bolts], Gornyy zhurnal. 2018, no 2, pp. 31—34.

14. Zubkov A. A., Latkin V. V., Neugomonov S. S., Volkov P. V. Perspektivnye sposoby krepleniya gornykh vyrabotok na podzemnykh rudnikakh [Promising methods of ground support for underground mines], Gornyy informatsionno-analiticheskiy byulleten’. 2014. Special edition S1-1, pp. 106—117.

15. Kalmykov V. N., Volkov P. V., Latkin V. V. Obosnovanie parametrov stalepolimernoy ankernoy krepi pri provedenii opytno-promyshlennykh ispytaniy v usloviyakh Saf'yanovskogo podzemnogo rudnika [Substantiation of fully grouted rock bolting design for full-scale trial in Safianovsky mine], Aktual'nye problemy gornogo dela. 2016, no 2, pp. 27—35.

16. Kalmykov V. N., Latkin V. V., Zubkov A. A., Neugomonov S. S., Volkov P. V. Tekhnologicheskie osobennosti vozvedeniya usilennoy kombinirovannoy krepi na podzemnykh rudnikakh [Technological features of installation of combination ground support and surface reinforcement in underground mines], Gornyy informatsionno-analiticheskiy byulleten’. 2015. Special edition 15, pp. 63—69.

17. Myaskov A. V. Metodologicheskie osnovy ekologo-ekonomicheskogo obosnovaniya sokhraneniya estestvennykh ekosistem v gornopromyshlennykh regionakh [Methodological framework for economic and ecological justification of preservation of natural eco-systems in mining regions], Gornyy informatsionno-analiticheskiy byulleten’. 2011, no 1, pp. 399—401.

18. Myaskov A. V. Sovremennye ekologo-ekonomicheskie problemy nedropol'zovaniya [Current economic and ecological problems in the subsoil use], Gornyy informatsionno-analiticheskiy byulleten’. 2014, no 2, pp. 157—160.

19. Timonin V. V., Kondratenko A. S. Process and measuring equipment transport in uncased boreholes, J. Min. Sci. 2015. Vol. 51. No 5, pp. 1056—1061.

20. Eremenko V. A. Kursy podgotovki geomekhanikov (geotekhnikov), geologov i gornykh inzhenerov po programmam Map3D i Rocscience (Dips, RocData, Unwedge) [Training courses on Map3D and Rocscience programs (Dips, RocData, Unwedge) for geomechanics (geotechnical engineers), geologists and mining engineers], Gornyy zhurnal. 2018, no 2, 2 p. [In Russ].

Mining World Russia
Subscribe for our dispatch