REDUCTION IN ENVIRONMENTAL IMPACT OF UNDERGROUND COAL MINING WITH BACKFILLING

High-rate coal production and complication of geological conditions in underground coal mining inevitably activates geological phenomena and processes. The strategic mission of a coal mining company is to maintain and increase the production output at the minimized industrial and ecological risks and sustainable or higher profit return with regard to laws of ecology and labor protection. Generalizationof numerous engineering geological classifications points at some hazardous types of natural geological phenomena: ground surface movement, gas-dynamic events, seismic events and hydrogeological events. These phenomena are activated under large-scale effect on coal and host rock mass. One of the methods of mitigating the impact on geological mass is application of the system of mining with backfill. In this system, longwalling is carried out at the same with backfilling of mined-out void with a certain time lag between the longwall and backfill fronts. Backfill can be complete or partial, and depends on the technological requirements imposed on the system of mining. The article discusses the main adverse geological processes and phenomena activated by underground coal mining, and emphasizes reduction in the environmental impact when the technology with backfill is used.

Keywords

Gas release, stress–strain state, ground control, backfill, hydraulic backfill, pneumatic backfill, hybrid backfill, cemented backfill, gravity-flow backfill, mechanical backfill.

Issue number: 2
Year: 2019
ISBN: 622.504, 622.831.1/.3, 622.272
UDK:
DOI: 10.25018/0236-1493-2019-02-0-28-35
Authors: Mazina I. E., Gangan P. P.

About authors: Mazina I.E., Leading Engineer, Gangan P.P., Graduate Student, e-mail: polina.gangan@yandex.ru, Phan Tuan Anh, Graduate Student, Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia.

REFERENCES:

1. Bondarik G. K., Yarg L. A. Inzhenerno-geologicheskie izyskaniya: uchebnik, 2-e izd. [Engineering-geological survey: textbook, 2nd edition], Moscow, KDU, 2008.

2. Bondarik G. K., Pendin V. V., Yarg L. A. Inzhenernaya geodinamika. Uchebnik [Engineering geodyna-
mics. Textbook], Moscow, KDU, 2007, 440 p.

3. Lomtadze V. D. Inzhenernaya geologiya. Inzhenernaya geodinamika [Engineering geology. Engineering geodynamics], Leningrad, Nedra, 1977, 480 p.

4. Lomtadze V. D. Inzhenernaya geologiya mestorozhdeniy poleznykh iskopaemykh. Uchebnik dlya vuzov [Engineering geology of mineral deposits. Textbook for high schools], Leningrad, Nedra, 1986, 272 p.

5. Lomtadze V. D. Inzhenernaya geologiya. Spetsial'naya inzhenernaya geologiya. Uchebnoe posobie dlya vuzov [Engineering geology. Special engineering geology. Higher educational aid], Leningrad, Nedra, 1978, 496 p.

6. Chernyak I. L., Yarunin S. A. Upravlenie sostoyaniem massiva gornykh porod [Management of the state of the rock massif], Moscow, Nedra, 1995, 395 p.

7. Petukhov I. M., Lin'kov A. M. Mekhanika gornykh udarov i vybrosov [Mechanics of mountain impacts and emissions], Moscow, Nedra, 1983.

8. Tatarinov V. N., Bugaev E. G., Tatarinova T. A. K otsenke deformatsiy zemnoy poverkhnosti po dannym sputnikovykh nablyudeniy [To the estimation of deformations of the earth's surface according to satellite observations], Gornyy zhurnal. 2015, no 10, pp. 27—32. DOI: dx.doi.org/10.17580/gzh.2015.10.05. [In Russ].

9. Manevich A. I., Tatarinov V. N. Primenenie iskusstvennykh neyronnykh setey dlya prognoza sovremennykh dvizheniy zemnoy kory [Application of artificial neural networks for the prediction of modern movements of the Earth's crust]. Issledovaniya po geoinformatike: trudy Geofizicheskogo tsentra RAN. 2017. т. 5, no 2, pp. 37—48. DOI: 10.2205/2017BS045. [In Russ].

10. Adushkin V. V. Triggernaya seysmichnost' Kuzbassa [Trigger seismicity of the Kuznetsk Basin]. Triggernye effekty v geosistemakh. Tezisy dokladov III Vserossiyskogo seminara-soveshchaniya. Institut dinamiki geosfer RAN. 2015, pp. 8—28. [In Russ].

11. Manevich A. I., Makarov V. A., Pashchenkov P. N. Perspektivy matematicheskogo modelirovaniya kak sostavnoy chasti geomekhanicheskogo monitoringa na shakhtakh s tsel'yu povysheniya effektivnosti upravleniya gazovydeleniem [Prospects of mathematical modeling as an integral part of geomechanical monitoring at mines with the aim of increasing the efficiency of gas release control], Gornyy informatsionno-analiticheskiy byulleten’. 2017, no 6, pp. 91—100. [In Russ].

12. Kolikov K. S., Nikitin S. G., Manevich A. I. Analiticheskaya otsenka prognoza metanoobil'nosti, rekomenduemogo normativnymi dokumentami [Analytical estimation of the forecast of methaneobility, recommended by normative documents], Bezopasnost' truda v promyshlennosti. 2016, no 8, pp. 34—39. [In Russ].

13. Morozov V. N., Manevich A. I. Modelirovanie napryazhenno-deformirovannogo sostoyaniya epitsentral'noy zony zemletryaseniya 13.03.1992 (M = 6.9, Turtsiya) [Modeling of the stress-strain state of the epicentral zone of the earthquake 13.03.1992 (M = 6.9, Turkey)], Geofizicheskie issledovaniya. 2018, vol. 19, no  1, pp. 17—29. DOI: 10.21455/gr2018.1-2. [In Russ].

14. Pytel W., Świtoń J., Wójcik A. The effect of mining face’s direction on the observed seismic activity. International Journal of Coal Science & Technology. 2016. Vol. 3. Iss. 3, pp. 322—329, DOI: 10.1007/s40789-016-0122-5.

15. Cheng Y., Jiang H., Zhang X., Cui J., Song C., Li X. Effects of coal rank on physicochemical properties of coal and on methane adsorption. International Journal of Coal Science & Technology. 2017. Vol. 4. Iss. 2, pp. 129—146. DOI: 10.1007/s40789-017-0161-6.

16. Conte E., Troncone A., Vena M. A method for the design of embedded cantilever retaining walls under static and seismic loading. Géotechnique. 2017. Vol. 67. Iss. 12. pp. 1081—1089. DOI: 10.1680/jgeot.16.P.201.

Subscribe for our dispatch