The main problems connected with the transport of steam–water mixture revealed in the course of development of hydrothermal mineral deposits include: instability of transport at low flow rates and considerable hydraulic resistance at high flow rates. The domestic experience of steam–water mixture pipeline design using MODEL software for modeling dispersed–annular flows is analyzed. The key provisions of the software are presented, and its high efficiency in pipeline design for high-rate mixture flow is emphasized. Based on the analysis of the domestic and foreign experience gained in development of hydrothermal mineral deposits, the article sets new challenges which call for a scientific basis to be provided for steam–water transport at low rates with regard to the modern knowledge on the stability of steam–water flows. Using such scientific basis, it is expedient to create a new computation procedure for pipeline pressure difference in order that gravity component is duly taken into account, which will enable prediction of unstable modes in operation of wells and appropriate decision-making on elimination of such modes at the pipeline design stage.

The study was supported by the Russian Federation for Basic Research, Project No. 16-05-00398 a.


Geothermal reserves, hydrothermal deposit, steam–water mixture, well, pipeline.

Issue number: 2
Year: 2019
ISBN: 622.977:532.55
DOI: 10.25018/0236-1493-2019-02-0-43-49
Authors: Shulyupin A. N., Chermoshenceva A. A., Varlamova N. N.

About authors: Shulyupin A.N. (1), Doctor of Technical Sciences, Deputy Director for Research and Innovation, e-mail:, Chermoshenceva A.A., Candidate of Technical Sciences, Assistant Professor, e-mail:, Kamchatka State Technical University, 683003, Petropavlovsk-Kamchatsky, Russia, Varlamova N.N. (1), Graduate Student, Senior Engineer, 1) Institute of Mining of Far Eastern Branch of Russian Academy of Sciences, 680000, Khabarovsk, Russia.


1. Lund J. W., Boyd T. L. Direct utilization of geothermal energy 2015 worldwide review. Geothermics, 2016, Vol. 60, pp. 66—93. doi: 10.1016/j.geothermics.2015.11.004.

2. Bertani R. Geothermal power generation in the world 2010—2014 update report. Geothermics, 2016, Vol. 60, pp. 31—43. doi: 10.1016/j.geothermics.2015.11.003.

3. Bertani R. Geothermal energy: an overview on resources and potential. International Geothermal Days. Slovakia, 2009.

4. Earth sciences. Paris: UNESCO, 1973. No. 12.

5. Lee K. C., Jenks D. G. Ohaaki geothermal steam transmission pipelines. Proceedings, 11-th New Zealand Geothermal Workshop, 1989. Pp. 25—30.

6. Wigly D. M. Separation plant and pipework design — Ohaaki steam field. Proceedings, 11-th New Zealand Geothermal Workshop, 1989. Pp. 19—24.

7. Delnov Y., Shulyupin A. Geothermal power generation in Kamchatka, Russia. Geothermal Resources Council Transactions. Portland, 1996, Vol. 20, pp. 733—736.

8. Zhao H. D., Lee K. C., Freeston D. H. Geothermal two-phase flow in horizontal pipes. Proceedings, World Geothermal Congress 2000. Kyushu—Tohoku, 2000. Pp. 3349—3353.

9. Ghaderi I. Comprehensive comparison between transmission two-phase flow in one line and two line separately for 50 MWe power plant in Sabalan, Iran. In: Proceedings of the World Geothermal Congress. Bali, Indonesia, 2010, no. 2501

10. Rizaldy, Zarrouk S. J. Pressure drop in large diameter geothermal two-phase pipe-lines. Proceedings 38th New Zealand Geothermal Workshop. New Zealand, 2016. Pp. 1—5.

11. Garcia-Gutierrez A., Martinez-Estrella J. I., Ovando-Castelar R., Vazquez-Sandoval A., Rosales-López C. Thermal Efficiency of the Los Humeros Geothermal Field Fluid Transportation Network. Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19—25 April 2015, no. 25007.

12. Cheik H. S., Ali H. A. Prefeasibility design of single flash in Asal geothermal power plant 2x25 MW, Djibouti. Proceedings World Geothermal Congress 2015 Melbourne, Australia, 19—25 April 2015, no. 25030.

13. Shulyupin A. N. Voprosy gidravliki parovodyanoy smesi pri osvoenii geotermal'nykh mestorozhdeniy [Hyd-
raulics of steam–water mixture in development of geothermal deposits], Vladivostok, Dal'nauka, 2011, 262 p.

14. Shulyupin A. N., Chermoshentseva A. A. Model' dispersno-kol'tsevogo potoka v geotermal'noy skvazhine. Dinamika geterogennykh sred v geotekhnologicheskom proizvodstve [Model of dispersed–annular flow in geothermal well. Dynamics of heterogeneous media in the industrial geotechnology], Petropavlovsk-Kamchatskiy, Izd-vo KGARF, 1998, pp. 23—35.

15. Aleksandrov A. A. Sistema uravneniy IFPWS-IF 97 dlya vychisleniya termodinamicheskikh svoystv vody i vodyanogo para v promyshlennykh raschetakh. Ch.1. Osnovnye uravneniya [System of equations IFPWS-IF 97 for calculating thermodynamic properties of water and water steam for industry. Part 1. Basic equation], Teploenergetika. 1998, no 9, pp. 69—77. [In Russ].

16. Shulyupin A. N. Steam-water flow instability in geothermal wells. International Journal of Heat and Mass Transfer, 2017, Vol. 105, pp. 290—295. doi: 10.1016/j.ijheatmasstransfer.2016.09.092.

Subscribe for our dispatch