INSIGHTS INTO FINE PARTICLES FORMATION BY LOW-RANK HARD COALS MECHANICAL TESTING AT LOW DIMENSIONAL SCALES

Low-rank hard coal was studied in order to characterize its propensity to formation of fine particles under vertically applied loading at micro- and nanoscales. To this end, micro- and nanoindentation tests were used. The vitrinite microcomponents of the selected coal were investigated due to their variations in mechanical properties with coal rank and type. Values of elastic moduli measured at micro- and nanoscales were similar. On the other hand, the scaling effects were observed during measuring of low-rank hard coal micro- and nanohardness, namely, the hardness linear decrease with growth of applied force. The effect of ‘strain hardening’ was found during repeatable (cyclic) nanoindentation with the increasing of the maximal load applied to the same area at the coal surface. This effect consists of rapid growth of hardness and elastic moduli values during repeatable indentation along with the increase of the applied maximal force. In the view of the previous investigations on mechanical behavior of brittle materials such as ceramics, and with the observations on coals crushing during nanoindentation, it was concluded that the aforementioned effects (scaling and ‘strain hardening’) are connected with the propensity of loss of the vitrinite structure integrity under vertically applied loads (at micro- and nanoscales).

Authors thank the Russian Science Foundation (grant #18-77-10052) for financial support of this work.

Keywords

Сoal, mechanical properties, microhardness, nanohardness, elastic modulus, scaling effect, crushing.

Issue number: 2
Year: 2019
ISBN: 531+620.17
UDK:
DOI: 10.25018/0236-1493-2019-02-0-69-77
Authors: Epshtein S. A., Kossovich E. L., Minin M. G., Prosina V. A.

About authors: Epshtein S.A. (1), Doctor of Technical Sciences, Head of Laboratory, Senior Researcher, e-mail: apshtein@yandex.ru, Kossovich E.L. (1), Candidate of Physical and Mathematical Sciences, Senior Researcher, e-mail: e.kossovich@misis.ru, Minin M.G., Junior Researcher, Institute of Physics and Technology, Ural Federal University, 620002, Ekaterinburg, Russia, Prosina V.A. (1), Student, Laboratory Assistant, 1) National University of Science and Technology «MISiS», 119049, Moscow, Russia.

REFERENCES:

1. Ganguli R., Bandopadhyay S. Relationship between particle size distribution of low-rank pulverized coal and power plant performance. Journal of Combustion, 2012. Vol. 2012, No di. DOI: 10.1155/2012/786920.

2. Liu Y., Lu H., Guo X., Gong X., Sun X., Zhao W. An investigation of the effect of particle size on discharge behavior of pulverized coal. Powder Technology, 2015. Vol. 284. Pp. 47—56. DOI: 10.1016/j.powtec.2015.06.041.

3. Li Q., Zhao C., Chen X., Wu W., Li Y. Comparison of pulverized coal combustion in air and in O2/CO2 mixtures by thermo-gravimetric analysis. Journal of Analytical and Applied Pyrolysis, 2009. Vol. 85, No 1—2. Pp. 521—528. DOI: 10.1016/j.jaap.2008.10.018.

4. Hower J.C., Graese A.M., Klapheke J.G. Influence of microlithotype composition on hardgrove grindability for selected eastern Kentucky coals. International Journal of Coal Geology, 1987. Vol. 7, No 3. Pp. 227—244. DOI: 10.1016/0166—5162(87)90038-3.

5. Tichánek F. Contribution To Determination of Coal Grindability Using Hardgrove Method Příspěvek Ke Stanovení Melitelnosti Uhlí Metodou. 2008. Vol. LIV, No 1. Pp. 27—32.

6. Amdur A.M., Zagainov S.A., Raznitsina A.L. Strength characteristics of coals - substitutes of coke in metallurgical aggregates. News of the Higher Institutions. Mining Journal, 2012. No. 2. Pp. 192—196.

7. GOST 21206-75 Coals and anthracite. Determination method for microhardness and microbrittleness. 1977. Russian p.

8. Zhao Z., Wang W., Dai C., Yan J. Failure characteristics of three-body model composed of rock and coal with different strength and stiffness. Transactions of Nonferrous Metals Society of China, 2014. Vol. 24, No 5. Pp. 1538—1546. DOI: 10.1016/S1003-6326(14)63223-4.

9. Shkuratnik V.L., Nikolenko Pp. V., Koshelev A.E. Stress dependence of elastic P-wave velocity and amplitude in coal specimens under varied loading conditions. Journal of Mining Science, 2016. Vol. 52, No 5. Pp. 873—877. DOI: 10.1134/S1062739116041322.

10. Pan J., Meng Z., Hou Q., Ju Y., Cao Y. Coal strength and Young’s modulus related to coal rank, compressional velocity and maceral composition. Journal of Structural Geology, 2013. Vol. 54. Pp. 129—135. DOI: 10.1016/j.jsg.2013.07.008.

11. Shkuratnik V.L., Filimonov Y.L., Kuchurin S. V. Regularities of Acoustic Emission in Coal Samples under Triaxial Compression. Journal of Mining Science, 2005. Vol. 41, No 1. Pp. 44—52. DOI: 10.1007/s10913-005-0062-8.

12. Shkuratnik V.L., Filimonov Y.L., Kuchurin S. V. Acoustic-emissive memory effect in coal samples under triaxial axial-symmetric compression. Journal of Mining Science, 2006. Vol. 42, No 3. Pp. 203—209. DOI: 10.1007/s10913-006-0048-1.

13. Zhao Y., Liu S., Jiang Y., Wang K., Huang Y. Dynamic Tensile Strength of Coal under Dry and Saturated Conditions. Rock Mechanics and Rock Engineering, 2016. Vol. 49, No 5. Pp. 1709—1720. DOI: 10.1007/s00603-015-0849-0.

14. Zhao Y., Zhao G.-F., Jiang Y., Elsworth D., Huang Y. Effects of bedding on the dynamic indirect tensile strength of coal: Laboratory experiments and numerical simulation. International Journal of Coal Geology, 2014. Vol. 132. Pp. 81—93. DOI: 10.1016/j.coal.2014.08.007.

15. West R.D., Markevicius G., Malhotra V.M., Hofer S. Variations in the mechanical behavior of Illinois bituminous coals. Fuel, 2012. Vol. 98. Pp. 213—217. DOI: 10.1016/j.fuel.2012.03.042.

16. Korshunov A.N., Dergunov D.M., Logov A.B., Gerike B.L. Coal cutting with a disk. Soviet Mining Science, 1975. Vol. 11, No 5. Pp. 571—573. DOI: 10.1007/BF02499387.

17. Macmillan N.H., Rickerby D.G. On the measurement of hardness in coal. Journal of Materials Science, 1979. Vol. 14, No 1. Pp. 242—246. DOI: 10.1007/BF01028354.

18. Das B. The effect of load on Vicker’s indentation hardness of coal. International Journal of Rock Mechanics and Mining Sciences, 1972. Vol. 9, No 6. Pp. 783—788. DOI: 10.1016/0148-9062(72)90036-8.

19. Borodich F.M., Bull S.J., Epshtein S.A. Nanoindentation in Studying Mechanical Properties of Heterogeneous Materials. Journal of Mining Science, 2015. Vol. 51, No 3. Pp. 1062—7391. DOI: 10.1134/S1062739115030072.

20. Kožušníková A. Determination of Microhardness and Elastic Modulus of Coal Components by Using Indentation Method. GeoLines, 2009. Vol. 22. Pp. 40—43.

21. Kossovich E.L., Dobryakova N.N., Epshtein S.A., Belov D.S. Mechanical properties of coal microcomponents under continuous indentation. Journal of Mining Science, 2016. Vol. 52, No 5. Pp. 906—912. DOI: 10.1134/S1062739116041382.

22. Epshtein S.A., Borodich F.M., Bull S.J. Evaluation of elastic modulus and hardness of highly inhomogeneous materials by nanoindentation. Applied Physics A: Materials Science and Processing, 2015. Vol. 119, No 1. Pp. 325—335. DOI: 10.1007/s00339-014-8971-5.

23. Kossovich E.L., Borodich F.M., Bull S.J., Epshtein S.A. Substrate effects and evaluation of elastic moduli of components of inhomogeneous films by nanoindentation. Thin Solid Films, 2016. Vol. 619. Pp. 112—119. DOI: 10.1016/j.tsf.2016.11.018.

24. Kossovich E.L., Epshtein S.A., Shkuratnik V.L., Minin M.G. Perspectives and problems of modern depth-sensing indentation techniques application for diagnostics of coals mechanical properties. Gornyy Zhurnal, 2017. No 12. Pp. 25—30. DOI: 10.17580/gzh.2017.12.05.

25. Argatov I.I., Borodich F.M., Epshtein S.A., Kossovich E.L. Contact stiffness depth-sensing indentation: Understanding of material properties of thin films attached to substrates. Mechanics of Materials, 2017. Vol. 114. Pp. 172—179. DOI: 10.1016/j.mechmat.2017.08.009.

26. Kossovich E., Epshtein S.A., Dobryakova N., Minin M., Gavrilova D. Mechanical Properties of Thin Films of Coals by Nanoindentation. Physical and Mathematical Modeling of Processes in Geomedia: 3d International Scientific School of Young Scientists; November 01—03, 2017, Moscow: IPMech RAS, 2018. Pp. 45—50. DOI: 10.1007/978-3-319-77788-7_6.

27. Kalei G.N. Some results of microhardness test using the depth of impression. Mashinovedenie, 1968. Vol. 4, No 3. Pp. 105—107.

28. Bulychev S.I., Alekhin V.P., Shorshorov M.K., Ternovskij A.P., Shnyrev G.D. Determination of Young modulus by the hardness indentation diagram. Zavodskaya Laboratoriya, 1975. Vol. 41, No 9. Pp. 1137—1140.

29. Oliver W.C., Pharr G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. Journal of Materials Research, 1992. Vol. 7, No 06. Pp. 1564—1583. DOI: 10.1557/JMR.1992.1564.

30. Oliver W.C., Pharr G.M. Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. Journal of Materials Research, 2004. Vol. 19, No 01. Pp. 3—20. DOI: 10.1557/jmr.2004.19.1.3.

31. ASTM. ASTM E384: Standard Test Method for Microindentation Hardness of Materials. Annual Book of ASTM Standards 2016. 1—42 Pp. DOI: 10.1520/E0384-10.2.

32. Halgaš R., Dusza J., Kaiferová J., Kovácsová L., Markovská N. Nanoindentation testing of human enamel and dentin. Ceramics — Silikaty, 2013. Vol. 57, No 2. Pp. 92—99.

33. Dutta A.K., Narasaiah N., Chattopadhyaya A.B., Ray K.K. The load dependence of hardness in alumina-silver composites. Ceramics International, 2001. Vol. 27, No 4. Pp. 407—413. DOI: 10.1016/S0272-8842(00)00095-X.

34. Faisal N.H., Prathuru A.K., Goel S., Ahmed R., Droubi M.G., Beake B.D., Fu Y.Q. Cyclic Nanoindentation and Nano-Impact Fatigue Mechanisms of Functionally Graded TiN/TiNi Film. Shape Memory and Superelasticity, 2017. Vol. 3, No 2. Pp. 149—167. DOI: 10.1007/s40830-017-0099-y.

35. Menčík J., Elstner M. Indentation Size Effects in Ductile and Brittle Materials. Key Engineering Materials, 2013. Vol. 586. Pp. 51—54. DOI: 10.4028/www.scientific.net/KEM.586.51.

36. Voyiadjis G., Yaghoobi M. Review of Nanoindentation Size Effect: Experiments and Atomistic Simulation. Crystals, 2017. Vol. 7, No 10. Pp. 321. DOI: 10.3390/cryst7100321.

37. Samadi-Dooki A., Voyiadjis G.Z., Stout R.W. A combined experimental, modeling, and computational approach to interpret the viscoelastic response of the white matter brain tissue during indentation. Journal of the Mechanical Behavior of Biomedical Materials, 2017. Vol. 77. Pp. 24—33. DOI: 10.1016/j.jmbbm.2017.08.037.

Subscribe for our dispatch