For the first time in the practice of construction of subways in the territory of the Russian Federation, a double-track running tunnel was built. Tunnelling excavation was carried out within the quaternary deposits — water-saturated completely unstable soils, as well as in dense Proterozoic clays. Tunnelling excavation was carried out using a tunnel-boring mechanized complex (TBMC) with earth pressure balance. The tunnel route crossed the traffic junctions, the railway; in the zone of influence of the construction there were buildings and structures. To ensure the safety of construction, geotechnical monitoring was carried out, one of the tasks of which was to adjust the technological parameters of the shield. For the possibility of prompt decision-making in the event that the controlled-parameters of the stress-strain state of the «tunnel-soil massif» system approach the criterion values, the measurements were performed by automated systems with real-time monitoring. This allows not only qualitatively to carry out emergency response in case of need, but also to make an operative correction of the technological mode of penetration, aimed at reducing deformations of the surrounding soil massif.

For citation: Lebedev M. O. Safety provision in the construction of a two-track subway tunnel in quaternary deposits. Gornyy informatsionno-analiticheskiy byulleten'. 2019;3:88-96. [In Russ]. DOI: 10.25018/0236-1493-2019-03-0-88-96.


Subway, double-track running tunnel, quaternary deposits, mode of penetration, geotechnical monitoring.

Issue number: 3
Year: 2019
ISBN: 0236-1493
UDK: 69.035.4
DOI: 10.25018/0236-1493-2019-03-0-88-96
Authors: Lebedev M. O.

About authors: M.O. Lebedev, Candidate of Technical Sciences, Assistant Professor, Deputy General Director for Research, e-mail:, SJC NIPII Lenmetrogiprotrans, Saint-Petersburg, Russia.


1. Golik V. I., Razorenov Yг. I., Belodedov A. A., Logachev A. V. Ekonomicheskiy ushcherb ot restrukturizatsii gornykh predpriyatiy Donbassa. Sbornik nauchnykh trudov [Economic losses from the restructuring of mining enterprises. Collection of scientific papers]. Krasnodar, 2017, pp. 37—45.

2. Molev M. D., Maslennikov S. A., Zanina I. A., Iliev A. G. Assessment of coal mines liquidation impact on ecological situation in the Russian Donbass. Izvestiya Tomskogo politekhnicheskogo universiteta. Inzhiniring georesursov. 2018. Vol. 329, no 7, pp. 148—156. [In Russ].

3. Norvatov Yu. A., Savel'ev D. I., Yashina A. V. Hydrogeological provision of mining operations in the development of coal deposits by underground mining. Gornyy informatsionno-analiticheskiy byulleten’. 2014, no 8, pp. 23—28. [In Russ].

4. Belodedov A. A., Golik V. I., Zaalishvili V. B., Khasheva Z. M., Shulgaty L. P. Restructuring results of Donbass coal mining enterprises. The Social Sciences. 2016. Vol. 11. No. 16. Pp. 4035—4039.

5. Molev M. D., Stradanchenko S. G., Maslennikov S. A. Theoretical and experimental substantiation of construction regional security monitoring systems technospheric. ARPN Journal of Engineering and Applied Sciences. 2015. No. 16, September. Pp. 6787—6792.

6. Bilgin N., Copur H., Balci C. Mechanical excavation in mining and civil industries. CRC Press, 2013. 353 p.

7. Gattinoni P., Pizzarotti E., Scesi L. Engineering Geology for Underground Works. Heidelberg, Springer, 2014, 312 р.

8. Merkulova V. A., Bogoliubova A. A. Analysis and estimation of the ecological risk resulting from negative man-made activities by means of end-to-end modeling. Man in India. 2017. Vol. 97. No. 3. pp. 163—173.

9. Agapov A. E. Ecological and economic monitoring the aftermath of the closure of particularly unprofitable coal mines (cuts). Gornyy informatsionno-analiticheskiy byulleten’. 2008, no 5, pp. 15—31. [In Russ].

10. Ekologicheskiy monitoring likvidatsii neperspektivnykh shakht Vostochnogo Donbassa. Pod red. V. M. Eremeeva [Environmental monitoring of liquidation of unpromising mines of Eastern Donbass. Eremeev V. M. (Ed.)]. Shakhty, Izd-vo YURO AGN, 2001, 280 p.

11. Mokhov A. V. Assessment of the break-through hazard of the treatment dredging of coal seams with the collapse of the roof under water bodies (based on the materials of the flooded workings). Gornyy informatsionno-analiticheskiy byulleten’. 2011, no 2, pp. 47—54. [In Russ].

12. Voznesenskii A. S., Kutkin Ya. O., Krasilov M. N., Komissarov A. A. Predicting fatigue strength of rocks by its interrelation with the acoustic quality factor. International Journal of Fatigue. 2015. Vol. 77. pp. 186 —193.

13. Renner J., Hettkamp T., Rummel F. Rock mechanical characterization of an argillaceous host rock of a potential radioactive waste repository. Rock Mechanics and Rock Engineering. 2000. 33(3). pp. 153—178.

14. Sornette D., Maillart T., Kroger W. Exploring the limits of safety analysis in complex technological systems. Risk Center, Zurich, 2013. URL:

15. Mu A., Liu Q., Tao H., Du Zh., Li, K., Xiao K. A new method of deliverability prediction by steady point in gas wells. Petroleum. 2016. Vol. 2. pp. 183—188.

16. Silich V. A., Silich M. P. Teoriya sistem i sistemnyy analiz: uchebnoe posobie. Pod red. A. A. Tsygankovoy [Systems theory and system analysis: Educational aid. Tsygankova A. A. (Ed.)], Tomsk, TPU, 2011, 276 p. URL: (accessed 15.09.2018).

17. Molev M. D. Upravlenie riskami, sistemnyy analiz i modelirovanie: uchebnoe posobie [Risk management, systems analysis and modeling: Educational aid], Shakhty, ISOiP (filial) DGTU v g. Shakhty, 2018, 125 p.

Subscribe for our dispatch