Successful realization of mining and underground civil infrastructure projects requires using equipment and technological tools rationally. One of the most important problems arising during underground work is tool abrasion. At this, along with the strength of rocks, abrasiveness is an important parameter for determining wear and abrasion of rock-breaking tools. An emphasis is laid on the fact that in Russia, compressive strength of rocks is determined using available state standards (GOST) which comply with foreign analogues, while abrasiveness of rocks lacks such standard. It is shown that in many countries with developed mining industry, abrasiveness of rocks is estimated by the index of abrasiveness CAI, while in domestic practice, it is determined by the method of Baron–Kuznetsov. It is proposed to introduce a state standard for determining abrasiveness of rocks, which should be based on the method of CERCHAR. It is also necessary to establish quantitatively expressed relationships between different indicators of abrasiveness, and the major of them are CAI and the abrasiveness index by Baron–Kuznetsov. In addition, the definition of abrasiveness of rocks should be included in the program of mandatory tests to determine physical and technical properties of rocks for any projects in the field of mining and civil construction. The implementation of these proposals will reduce the risks of errors in economic cost planning and in evaluation of mining process flows. It will also improve mine management quality.

For citation: Averin EA. Abrasiveness of rocks as an essential parameter in assessment of application risk of heading machines. Gornyy informatsionno-analiticheskiy byulleten'. 2019;3:184-191. [In Russ]. DOI: 10.25018/0236-1493-2019-03-0-184-191.


Abrasiveness, rocks, heading machines, tool abrasion, equipment downtime risk elimination, state standard development prerequisites.

Issue number: 3
Year: 2019
ISBN: 0236-1493
UDK: 622(23.02:02):622.232
DOI: 10.25018/0236-1493-2019-03-0-184-191
Authors: Averin E. A.

About authors: E.A. Averin, PhD, Engineer-Designer, OOO Skuratovsky Experimental Plant, 300911, Tula, Russia, e-mail: evgeniy.averin.90@mail.ru.


1. Linnik V. Yu., Polyakov A. V., Linnik Yu. N. Mining and geological and quality features Russian coal seams, practiced underground way. Izvestiya TulGU. Nauki o Zemle. 2017, no  3, pp. 168—182. [In Russ].

2. Linnik Yu. N., Afanasiev V. Ya., Linnik V. Yu. State-of-the-art and prospect forecast of geological conditions in underground coal mining for the period up to 2030. Eurasian mining. 2015, no  2, pp. 47—51.

3. Su P., Wang W., Huo J., Li Z. Optimal Layout Design of Cutters on Tunnel Boring Machine. Journal of Northeastern University (Natural Science). 2010. Vol. 31, no  6, pp. 877—881.

4. Zhang H. M. Mechanical analysis of TBM disc cutter damage mechanism and its application. Modern Tunnelling Technology. 2011. 48, no  1, pp. 61—65.

5. Linnik Yu. N., Zhabin A. B., Linnik V. Yu., Polyakov A. V. Notes about how cutters and cutterholders malfunctions affect to indicators of coal-plow machines work efficiency. Izvestiya TulGU. Nauki o Zemle. 2018, no  2, pp. 247—263. [In Russ].

6. Talerov M. P., Bolobov V. I., Chupin S. A. Reliability calculation and establishing the causes of damage tangential rotary cutters. Gornoe oborudovanie i elektromekhanika. 2014, no 1, pp. 16—23. [In Russ].

7. Talerov M. P., Bolobov V. I. Life and failures of tangential-rotary picks. Gornyy zhurnal. 2018, no 4, pp. 77—81. [In Russ].

8. Comakli R., Kahraman S., Balci C. Performance prediction of roadheaders in metallic ore excavation. Tunnelling and Underground Space Technology. 2014. Vol. 40, pp. 38—45.

9. Ko T. Y., Kim T. K., Son Y., Jeon S. Effect of geomechanical properties on Cerchar Abrasivity Index (CAI) and its application to TBM tunnelling. Tunnelling and Underground Space Technology. 2016. Vol. 57, pp. 99—111.

10. Yaralı O., Yaşar E., Bacak G., Ranjith P. G. A study of rock abrasivity and tool wear in coal measures rocks. International Journal of Coal Geology. 2008. Vol. 74, no  1, pp. 53—66.

11. Majeed Y., Bakar M. Z. A. Effects of variation in the particle size of the rock abrasion powder and standard rotational speed on the NTNU/SINTEF abrasion value steel test. Bulletin of Engineering Geology and the Environment. 2017, pp. 1—18.

12. Bakar M. Z. A., Majeed Y., Rostami J. Influence of moisture content on the LCPC test results and its implications on tool wear in mechanized tunneling. Tunnelling and Underground Space Technology. 2018. Vol. 81, pp. 165—175.

13. Macias F. J., Dahl F., Bruland A. New rock abrasivity test method for tool life assessments on hard rock tunnel boring: the rolling indentation abrasion test (RIAT). Rock Mechanics and Rock Engineering. 2016. Vol. 49, no . 5, pp. 1679—1693.

14. West G. Rock abrasiveness testing for tunnelling. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts. 1989. Vol. 26, no 2, pp. 151—160.

15. Tanayno A. S. Testing Rock Abrasivity. Fiziko-tekhnicheskie problemy razrabotki mestorozhdeniy poleznykh iskopaemykh. 2014, no 6, pp. 87—95. [In Russ].

16. Zhabin A. B., Polyakov A. V., Averin E. A. On the state standard for determination of rock’s abrasiveness. Ugol'. 2018, no 11, pp. 86—91. [In Russ].

17. Zhabin A. B., Polyakov A. V., Averin E. A., Sarychev V. I. State of scientific researches in the field of rock destruction by picks at the turn of the century. Izvestiya TulGU. Nauki o Zemle. 2018, no 1, pp. 230—247. [In Russ].

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.