OPTIMIZATION OF REAGENT MODES IN COPPER-MOLYBDENUM ORE FLOTATION USING ECONOMY-ORIENTED CRITERIA

An important task in the study of ore dressability is to select the optimal parameters of flotation. In solving this problem, it is required to optimize multiparametric system of consumption of flotation reagents, i.e. indexes of flotation process. For the optimization of reagent modes in flotation of copper–molybdenum ore, it is proposed to use integrated optimization criteria taking into account the influence of economic factors on the final efficiency of flotation. Using the steep ascent method and the factorial experiment, the application of regression equations relating the integrated optimization criterion—function of reduced loss—with consumption of flotation reagents. For the bulk copper–molybdenum ore flotation, the optimization criterion includes the cost of metal loss tailings as well as the cost of re-extraction of pyrite from the bulk concentrate. For the molybdenum flotation, the optimization criterion includes the cost of copper and molybdenum lost in different concentrates as well as the cost of quality loss of the molybdenum concentrate. The calculations of the optimized reagent modes in the bulk and selective copper–molybdenum flotation are exemplified. It is shown that the use of local regression equations for individual parameters retains uncertainty in the choice of adjustment of reagent costs. There is no such uncertainty when using the reduced loss criterion Qt. The application of the integrated criterion to choosing efficient reagent modes makes it possible to find optimal solutions in the complex multiparameter system of input and output parameters of flotation process.

For citation: Erdenezul Jargalsaikhan, Morozov V. V. Optimization of reagent modes in copper–molybdenum ore flotation using economy-oriented criteria. Gornyy informatsionno-analiticheskiy byulleten'. 2019;3:210-220. [In Russ]. DOI: 10.25018/0236-1493-2019-03-0-210-220.

Keywords

Сopper–molybdenum ore, flotation, reagent mode, optimization, integrated criterion, steepest ascent method, complete factorial experiment.

Issue number: 3
Year: 2019
ISBN: 0236-1493
UDK: 622.765.4
DOI: 10.25018/0236-1493-2019-03-0-210-220
Authors: Erdenezul Jargalsaikhan, Morozov V. V.

About authors: Erdenezul Jargalsaikhan, Graduate Student, e-mail: zul479@gmail.com, V.V. Morozov, Doctor of Technical Sciences, Professor, e-mail: dchmggu@mail.ru, National University of Science and Technology «MISiS», 119049, Moscow, Russia. Corresponding author: V.V. Morozov, e-mail: dchmggu@mail.ru.

REFERENCES:

1. Box G., Wilson K. On the experimental attainment of optimum conditions. Journal of the Royal Statistical Society. 1951, no 13, pp. 1—45.

2. Barskiy L. A. Kozin V. Z. Sistemnyy analiz v obogashchenii poleznykh iskopaemykh [System analysis in mineral beneficiation], Moscow, Nedra, 1978, 486 p.

3. Kozin V. Z. Issledovanie rud na obogatimost'. Uchebnoe posobie [Analysis of ore preparability. Educational aid], Ekaterinburg, Izd-vo UGGU, 2009, 380 p.

4. Algebraistova N. K. Issledovanie rud na obogatimost', uchebnoe posobie dlya vuzov Исследование руд на обогатимость, Higher educational aid. Krasnoyarsk, Izd-vo SFU. 2009, 123 p.

5. Boduen A. Ya., Mel'nichuk M. S., Petrov G. V., Fokina S. B. Preparability study of copper–porphyry ore in the Aldan Region. Mezhdunarodnyy nauchno-issledovatel'skiy zhurnal. 2018, no 3 (69), pp. 68—74. [In Russ].

6. Larichkin F. D., Ibrokhim A., Glushchenko Yu. G., Novosel'tseva V. D., Alieva T. E. Methodical approaches to optimizing integrated mineral processing. Tsvetnye metally. 2011, no 4, pp. 20—23. [In Russ].

7. Lin Q, Gu G., Wang H. Recovery of molybdenum and copper from porphyry ore via iso-flotability flotation. Transactions of Nonferrous Metals Society of China. 2017. 27.I-10, Pp. 2260—2271.

8. Balasanyan S. Sh. Mathematical model for economic efficiency index of milling circuit at Kadzharan processing plant. Obogashchenie rud. 2012, no 4, pp. 46—50. [In Russ].

9. Malewski J, Krzeminska M. Dependence of mine revenue on the grade of copper concentrate. Physicochem. Probl. Miner. Process. 2012, 48(2), pp. 545—554.

10. Malewski J. Comparative analysis of concentrate grading and revenue in polish copper mines. Mining Science, vol. 23, Nov. 2016. pp. 55−64.

11. Ignatkina V. A., Bocharov V. A., Milovich F. O., Ivanova P. G., Khachatryan L. S. Selective enhancement of flotation activity of sulfide nonferrous metals using various combinations of sulphydryl collectors. Obogashchenie rud. 2015, no 3, pp. 18—23. [In Russ].

12. Skorokhodov V. F., Nikitin R. M., Yakushkin V. P. Modeling flotation process using engineering analysis systems. Gornyy informatsionno-analiticheskiy byulleten’. 2012, no 4, pp. 156—164. [In Russ].

13. Bhadani K., Asbjörnsson G., Hulthén T., Evertsson M. Application of multi-disciplinary optimization architectures in mineral processing simulations. Minerals Engineering. 128, Nov. 2018, pp. 27—35.

14. Delgerbat L. Investigation, modeling and optimization of milling and bulk flotation of copper–molybdenum ore. Gornyy informatsionno-analiticheskiy byulleten’. 2002, no 6, pp. 213—220. [In Russ].

15. Morozov V. V., Erdenezuul Zhargalsaykhan. Milling and flotation optimization using model-oriented criteria. Trudy mezhdunarodnoy konferentsii «Sovremennye problemy kompleksnoy pererabotki trudnoobogatimykh rud i tekhnogennogo syr'ya» (Plaksinskie chteniya — 2017). Krasnoyarsk, 2017, pp. 244—247.

16. Morozov Yu. P. Proektirovanie obogatitel'nykh fabrik. Ch. 1. [Processing plant design. Part 1], Ekaterinburg, Izd-vo Tayls Ko., 2009, 303 p.

17. Delgerbat L., Ganbaatar Z., Duda A. «On-Line» Intellectual Control of Copper-Molybdenum Ore Bulk Flotation. Prepr. 11th. IFAC Symposium on Automation in Mining, Mineral and Metal Processing. MMM 2004. France. Elsevier. 2004. Pp. 234—239.

18. Bhadani K., Asbjornsson G., Hulthén E., Evertsson M. Comparative Study of Optimization Schemes in Mineral Processing Simulations. Proceedings of XXIX International Minerals Processing Congress, Moscow, Russia, 2018.

19. Papalambros P. Y., Wilde D. J. Principles of optimal design: modeling and computation, Third ed. Cambridge University Press, New York, NY; Cambridge, United Kingdom. 2017. 376 p.

Mining World Russia
Subscribe for our dispatch