The article presents the study outcome on determination of stress state in rock mass of Zapolyarny mine by the overcoring method. Orientation of principal stresses agrees with rock mass jointing and is found using geodynamic zoning maps and in-situ measurements of joint systems with subsequent processing of the data in geomechanical program Dips. From the results, the original the original stress field in Zapolyarny mine is connected with existing jointing, is gravitational in nature and described as σ1 > σ2 = σ3 at the horizontal/vertical stress ratio of 0.7. The major principal stress σ1 is oriented vertically, the intermediate principal stress σ2 is directed along the strike line of the Norilsk–Kharaelakh fault. Stoping causes additional load on selvage by the value 2.5 times higher than the original stresses. Having generalized the borehole data, it is possible to draw a conclusion that in the selvage, a mining-induced stress zone appears, with weighted mean vertical stress exceeding and with the horizontal/vertical stress ratio of 0.70. These results point at the gravity nature of the effective stresses. The average stress concentration factor obtained in the measurement process also agrees well with the stress patterns in Zapolyarny mine. According to the common laws, direction of the major principal stress can be determined using the rose diagrams of joint orientations. The joint planes in the rose diagrams are directed along the lines of the preliminary marked principal stresses. The main systems of joints were mapped using the geological field books and via direct measurement of jointing parameters by a dip compass.

For citation: Sergunin M. P., Eremenko V. A. Determining parameters of original stress field in rock mass in Zapolyarny mine. Gornyy informatsionno-analiticheskiy byulleten'. 2019;4:63-74. [In Russ]. DOI: 10.25018/0236-1493-2019-04-0-63-74.


Stresses, rock mass, overcoring method, jointing, geodynamic zoning, measurement borehole, program Dips.

Issue number: 4
Year: 2019
ISBN: 0236-1493
UDK: 622.272
DOI: 10.25018/0236-1493-2019-04-0-63-74
Authors: Sergunin M. P., Eremenko V. A.

About authors: M.P. Sergunin, Head of Department, Center for Geodynamic Safety, Polar Division of PJSC «MMC «Norilsk Nickel», Norilsk, Russia, V.A. Eremenko, Doctor of Technical Sciences, Professor of Russian Academy of Sciences, Director of the Research Center «Application of Geomechanics and Mining of Convergent Technologies», Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia, e-mail: Corresponding author: V.A. Eremenko, e-mail:


1. Sergunin M. P. Assessment of stress state against the background of stoping operations with caving of ore and enclosing rocks in Zapolyarny mine. Sovremennye tekhnologii osvoeniya mine-ral'nykh resursovCollection of scientific papers. Krasnoyarsk, GOU «GATSMiZ», 2004. [In Russ].

2. Sidorov D. V., Potapchuk M. I., Sidlyar A. V. Rockburst hazard prediction in tectonically damaged ore body at deep levels of the Nikolaevka complex deposit. Zapiski Gornogo instituta. 2018. Vol. 234, pp. 604—611. [In Russ].

3. Eremenko V. A., Gakhova L. N., Semenyakin E. N. Formation of concentration zones of stresses and dynamic events in deep-level mining at the Tashtagol deposit. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2012, no 2, pp. 80—87. [In Russ].

4. Myaskov A. V. Methodological framework for ecological-and-economic substantiation of natural ecosystem preservation in mining regions. Gornyy informatsionno-analiticheskiy byulleten’. 2011, no 1, pp. 399—401. [In Russ].

5. Myaskov A. V. Current ecological-and-economic problems in the subsoil use. Gornyy informatsionno-analiticheskiy byulleten’. 2014, no 2, pp. 157—160. [In Russ].

6. Timonin V. V., Kondratenko A. S. Process and measuring equipment transport in uncased boreholes. Journal of Mining Science. 2015. Vol. 51. No 5, pp. 1056—1061.

7. Otchet po teme «Issledovanie ustoychivosti okhrannogo i bar'ernykh tselikov pri otrabotke nizhnikh gorizontov rudnika «Zapolyarnyy» [Stability of protective and safety pillars in lower-level mining in Zapolyarny mine: Report], Noril'sk, GMOITS, 1969. [In Russ].

8. Zertsalov M. G. Mekhanika skal'nykh gruntov: Uchebnik [Rock mechanics: Textbook], Moscow, Yurisprudentsiya, 2003, 184 p.

9. Zertsalov M. G. Mekhanika gruntov (vvedenie v mekhaniku skal'nykh gruntov): Uchebnoe izdanie [Soil mechanics (Introduction to rock mechanics): Textbook], Moscow, Assotsiatsii stroitel'nykh vuzov, 2006, 346 p.

10. Chernyshev S. N. Treshchiny gornykh porod [Joints in rocks], Moscow, Nauka, 1983.

11. Figueiredo B., Cornet F. H., Lamas L., Muralha J. Determination of the stress field in a mountainous granite rock mass. International Journal of Rock Mechanics and Mining Sciences Vol. 72, December 2014, Pp. 37—48.

12. Jingshou Liu, Wenlong Ding, Haimeng Yang, Ruyue Wang, Shuai Yin, Ang Li, Fuquan Fu. 3D geomechanical modeling and numerical simulation of in-situ stress fields in shale reservoirs. A case study of the lower Cambrian Niutitang formation in the Cen'gong block, South China. Tectonophysics. Vol. 712—713, 21 August 2017, Pp. 663—683.

13. Chongyuan Zhang, Qunce Chen, Xianghui Qin, Bo Hong, Wen Meng, Quanfeng Zhang In-situ stress and fracture characterization of a candidate repository for spent nuclear fuel in Gansu, northwestern China. Engineering Geology. Vol. 231, 14 December 2017, Pp. 218—229.

14. Shuai Yin, Wenlong Ding, Wen Zhou, Yuming Shan, Runcheng Xie, Chunhua Guo, Xiangyu Cao, Ruyue Wang, Xinghua Wang In situ stress field evaluation of deep marine tight sandstone oil reservoir. A case study of Silurian strata in northern Tazhong area, Tarim Basin, NW China. Marine and Petroleum Geology. Vol. 80, February 2017, Pp. 49—69.

15. Cheuk Yiu Lai, Louis Ngai Yuen Wong, Mark Wallace Review and assessment of In-situ rock stress in Hong Kong for territory-wide geological domains and depth profiling. Engineering Geology. 248 (2019). Pp. 267—282.

16. Jianju Du, Xiang huiQin, Qingli Zeng, Luqing Zhang, Qunce Chen, Jian Zhou, Wen Meng Estimation of the present-day stress field using in-situ stress measurements in the Alxa area, Inner Mongolia for China's HLW disposal. Engineering Geology. Vol. 220, 30 March 2017, Pp. 76—84.

17. Batugina I. M., Batugin A. S., Petukhov I. M. Otchet o NIR Korrektirovka kart geodinamicheskogo rayonirovaniya nedr, postroennykh v 1986—88 g. v svyazi s modernizatsiey metodiki ikh postroeniya [Adjustment of 1986–88 geodynamic zoning maps of subsoil in connection with mapping procedure modernization: R&D report], Noril'sk, 2005.

18. Selivanov D., Biryuchev I. Livinskiy I., Spirin V. Razrabotka geomekhanicheskoy informatsionnoy modeli, etap 3 [Development of geomechanical information model, stage 3], 2018.

19. Reglament po otsenke narushennosti massiva gornykh porod na rudnikakh ZF PAO «GMK «Noril'skiy nikel'» [Rock mass quality assessment regulations for mines of Polar Division of Norilsk Nickel], Noril'sk, 2018. [In Russ].

20. Barton N., Lien R., Lunde J. Engineering classification of rock massec for the design of tunnel support. Rock Mechanics, 1974, 6(4), pp. 183—236.

21. Barton N. Application of Q-System and Index Tests to Estimate Shear Strength and Deformability of Rock Masses. Workshop on Norwegian Method of Tunneling. New Delhi, 1993.pp. 66—84.

22. Laubscher D. H. A geomechanics classification system for the rating of rock mass in mine design. Trans. S. Afr. Inst. Min. Metal., 9(10). 1990.

23. Terzaghi K., Peck R. B. Soil mechanics in engineering practice. Wiley, New York. 1967.

24. Eremenko V. A., Esina E. N., Semenyakin E. N. Operational monitoring of stress state in rock mass under mining. Gornyy zhurnal. 2015, no 8, pp. 42—47.

25. Еременко В. А. Training courses for geomechanics (geotechnical engineers), geologists and mining engineering on Map3S and Rocscience (Dips, RocData, Unwedge) software suites. Gornyy zhurnal. 2018, no 2 , 2 p.

Subscribe for our dispatch