In order to obtain reliable results in solving numerical problems, it is important to select such model of material behavior that offers the best closest description of strength and deformation characteristics of this material. The hardening soil model is considered as the most fitting model for compact clays in solution of problems connected with reduction in intermediate effective stress at the concurrent shearing resistance of rocks with intrinsic nonlinear deformation in plastic domain. It is found that the reliable description of actual soil behavior requires calibrating parameters of the selected soil behavior model. The aim of this study is to obtain input parameters of the hardening soil model, such that are capable to describe reliably deformation of Proterozoic clay, to be then used in modeling geomechanical processes in Saint-Petersburg. The source for the selection of parameters was the lab test data on deformation of consolidated–undrained Proterozoic clay samples under triaxial compression. The samples were taken from enclosing soil mass of the Saint-Petersburg Metro stations Prospect Slavy and Bukharestskaya. The procedure is proposed for selection and calibration of input data and controllable parameters in the hardening soil model in Plaxis SoilTest, and the obtained results are reported. It is found that selection and calibration of the hardening soil model parameters should take into account expected range of lateral pressure (range of minor principal stresses), inside which subsequent modeling of underground structures will be carried out later on.

For citation: Alekseev A. V., Iovlev G. А. Adjustment of hardening soil model to engineering geological conditions of Saint-PetersburgGornyy informatsionno-analiticheskiy byulleten'. 2019;4:75-87. [In Russ]. DOI: 10.25018/0236-1493-2019-04-0-75-87.


Plaxis, SoilTest, Proterozoic clays, three-axial testing, hardening soil model, numerical modeling.

Issue number: 4
Year: 2019
ISBN: 0236-1493
UDK: 624.191.22
DOI: 10.25018/0236-1493-2019-04-0-75-87
Authors: Alekseev A. V., Iovlev G. А.

About authors: A.V. Alekseev, Graduate Student, e-mail:, G.А. Iovlev, Graduate Student, e-mail:, Saint Petersburg Mining University, 199106, Saint-Petersburg, Russia. Corresponding author: G.А. Iovlev, e-mail:


1. Brinkgreve R. B.J. PLAXIS 3D. User manual. 2017, 816 p.

2. Duncan J. M., Chang C.-Y. Nonlinear analysis of stress and strain in soil. 1970. pp. 1629—1653.

3. Hsieh P. G., Ou C. Y. Analysis of nonlinear stress and strain in clay under the undrained condition. Journal of Mechanics. 2011. No 2 (27). pp. 201—213.

4. Kempfert H. G., Gebreselassie B. Excavations and foundations in soft soils, Springer Berlin Heidelberg, 2006. pp. 591.

5. Kondner R. L., Zelasko J. S. A hyperbolic stress strain formulation for sands, 1963, pp. 289—324.

6. Obrzud R. The Hardening Soil model with small strian stiffness. 2011, pp. 104.

7. Obrzud R. Constitutive Virtual Laboratory or assistance in parameter determination in ZSoil v2016. 2016, pp. 21.

8. Obrzud R. F., Truty A. The Hardening Soil model. A practical guidebook. 2018.

9. Truty A., Obrzud R. Improved formulation of the hardening soil model in the context of modeling the undrained behavior of cohesive soils. Studia Geotechica et Mechanica, 2015, Vol. 37, No. 2, pp. 61—68.

10. Wang W. D., Li Q., Xu Z. H. Determination of parameters for hardening soil small strain model of Shanghai clay and its application in deep excavations Seoul, 2017, pp. 2065—2068.

11. Boldyrev G. G., Idrisov I. Kh., Valeev D. N. Determining parameters of models of soil. Osnovaniya, fundamenty i mekhanika gruntov. 2006, no 3, pp. 1—14. [In Russ].

12. Boldyrev G. G., Mel'nikov V. V., Novichkov G. A. Interpretation of lab test results for determination of deformation characteristics of soil. Inzhenernye izyskaniya. 2014, no 5—6, pp. 98—105. [In Russ].

13. Karasev M. A. Prognoz geomekhanicheskikh protsessov v sloistykh porodnykh massivakh pri stroitel'stve podzemnykh sooruzheniy slozhnoy prostranstvennoy konfiguratsii v usloviyakh plotnoy gorodskoy zastroyki [Prediction of geomechanical processes in stratified rock mass during underground construction of complex 3D geometry in the conditions of compact urban planning], Doctor’s thesis, Saint-Petersburg, 2017, 307 p.

14. Karasev M. A., Petrov D. N. Analysis of mechanical behavior of Proterozoic claysNauka, tekhnika i obrazovanie. 2016, no 10, pp. 112—116. [In Russ].

15. Mel'nikov R. V., Sagitova R. Kh. Calibration of hardening soil model parameters by lab test data in SoilTestAkademicheskiy vestnik URALNIIPROEKT RAASN. 2016, no 3, pp. 79—83. [In Russ].

16. Strokova L. A. Determination of parameters for numerical modeling of soil behaviorIzvestiya Tomskogo politekhnicheskogo universiteta. 2008, no 1 (313), pp. 69—74. [In Russ].

17. Strokova L. A. Determination of soil deformability parameters for elastoplastic modelsVestnik Tomskogo gosudarstvennogo universiteta. 2013, no 367, pp. 190—194. [In Russ].

18. Ter-Martirosyan A. Z., Mirnyy A. Yu., Sobolev E. S. Features of determining parameters of modern soil model in lab-scale testingGeotekhnika. 2016, no 1, pp. 66—72. [In Russ].

19. Grunty. Metody statisticheskoy obrabotki rezul'tatov ispytaniy. GOST 20522-2012 (Soils. Methods of statistical processing of test results. State Standart 20522-2012). 2012.

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.