It is shown that the water conducting cracks are formed in the undermined rocks in the areas of water-resistant strata (WRS) containing so called «abnormal» («unusual») zones. It is noted that the «abnormality» of the geological section in the analyzed cases of accidents of groundwater inflows into the mines during the development of Verkhnekamsky and other salt deposits was established post factum based on a retrospective analysis of the possible causes of accidents. It is concluded that the methods of protection of WRS, recommended by the current regulations, can not be effectively implemented in the presence of abnormal zones. This problem is associated with the difficulties in detecting anomalous zones during exploration and the imperfection of methods of classifying abnormal zones as dangerous zones. It is almost impossible to obtain the necessary data on the qualitative and quantitative parameters of the abnormal zones with the actually used methods of exploration of salt deposits. Therefore there is a high chance, that the project technical solutions (backfilling ratios, pillars’ dimensions, rooms’ dimensions, etc.), aimed to prevention of water conducting cracks development, will not correspond to the actual mining and geological conditions. It is concluded that the greatest danger is posed by abnormal zones characterized by changes in the structure, composition and strength characteristics of rocks, and located above the permanent edges of mine fields. In this situation, in conditions of the Verkhnekamskoye deposit, the formation of water conducting cracks in WRS should be considered as an event that will inevitably occur during the operation of the mine or after its closure. In the given paper, measures are proposed to prevent the formation of water conducting cracks over permanent edges of mine fields.

For citation: Zubov V. P., Kovalski E. R., Antonov S. V., Pachgin V. V. Improving the safety of mines in developing Verkhnekamsk potassium and magnesium salts. Gornyy informatsionno-analiticheskiy byulleten'. 2019;5:22-33. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0-22-33


Water-resistant strata, water conducting cracks, abnormal zones, mining borders, borders of mine fields, breakthrough of groundwater into a mine.

Issue number: 5
Year: 2019
ISBN: 0236-1493
UDK: 622.831
DOI: 10.25018/0236-1493-2019-05-0-22-33
Authors: Zubov V. P., Kovalski E. R., Antonov S. V., Pachgin V. V.

About authors: V.P. Zubov (1), Doctor of Technical Sciences, Head of Chair, e-mail:, E.R. Kovalski (1), Candidate of Technical Sciences, Assistant Professor, e-mail:, S.V. Antonov, Mining Engineer, General Director, K-Potash Service LLC, 238434, e-mail:, V.V. Pachgin (1), Mining Engineer, e-mail:, 1) Saint Petersburg Mining University, 199106, Saint-Petersburg, Russia Corresponding author: V.P. Zubov, e-mail:


1.        Boltyrov V. B., Vatagina V. E. Danger techno and native processes at the Verkhnekamskoe Deposit of potash-magnesium salts Deposit (Perm Krai). Zashchita naseleniya i territoriy v chrezvychaynykh situatsiyakh. Trudy II Mezhdunarodnoy nauchno-prakticheskoy konferentsii. 2016, pp. 67—72. [In Russ].


2.        Zubov V. P., Smychnik A. D. The concept of reducing the risks of potash mines flooding caused by groundwater inrush into excavations. Zapiski Gornogo instituta. 2015. Vol. 215, pp. 29—37. [In Russ].


3.        Laptev B. V. Emergency situations at Verkhnekamsky potash-magnesium minefield. Bezopasnost' truda v promyshlennosti. 2009, no 8, pp. 28—31. [In Russ].


4.        Prugger F. F., Prugger A. F. Water problems in Saskatchewan potash production, what can be learned from them. Byulleten' MGK. 1991, Vol. 84, no 945, pp. 58—66. [In Russ].


5.        Asanov V. A., Pan'kov I. L., Evseev A. V. Experimental and theoretical studies of the long-term stability of the bearing elements of the chamber system for the development of potash layers. Vestnik permskogo nauchnogo tsentra. 2017, no 1, pp. 8—14. [In Russ].


6.        Baryakh A. A., Asanov V. A., Pan'kov I. L. Dynamic mass collapse of rock in the mine of the Verkhnekamskoye potash deposit. Triggernye effekty v geosistemakh. Materialy tret'ego Vserossiyskogo seminara-soveshchaniya, Moscow, 16—19 June 2015, pp. 199—206. [In Russ].


7.        Kondratov A. B. New concept and development of technical solutions for the active protection of potash mines from flooding. Gornyy informatsionno-analiticheskiy byulleten’. 2012, no 6, pp. 27—38. [In Russ].


8.        Laptev B. V. Historiography of accidents in the development of salt deposits. Bezopasnost' truda v promyshlennosti. 2011, no 12, pp. 41—46. [In Russ].


9.        Metodicheskie rekomendatsii k «Ukazaniyam po zashchite rudnikov ot zatopleniya i okhrane podrabatyvaemykh ob"ektov na Verkhnekamskom mestorozhdenii kaliyno-magnievykh soley» [Methodical recommendations to «Instructions on protection of mines from flooding and protection of the worked-out objects on the Verkhnekamskoye field of potassium and magnesium salts». Put into force by the order of OJSC «Uralkali» No 525 from 21.03.2017]. 2014. [In Russ].


10.    Tennison L. O. To the method of estimation of the deformed state of rocks composing the water-protective thickness in the boundary part of the displacement muld. Gornyy informatsionnoanaliticheskiy byulleten’. 2011, no 3, pp. 317—328. [In Russ].


11.    Ukazaniya po zashchite rudnikov ot zatopleniya i okhrane podrabatyvaemykh ob"ektov podrabatyvaemykh ob"ektov na Verkhnekamskom mestorozhdenii kaliyno-magnievykh soley. PAO «Uralkaliy» [Instructions on protection of mines from flooding and protection of workable objects of workable objects at the Verkhnekamskoye field of potassium and magnesium salts. PJSC Uralkali. — Enacted by the order of OJSC «Uralkali» No 525 from 21.03.2017]. [In Russ].


12.    Pravila po zashchite rudnikov ot zatopleniya v usloviyakh Starobinskogo mestorozhdeniya kaliynykh soley [Rules for the protection of mines from flooding in conditions of the Starobin Deposit of potassium salts], Minsk, OAO «Belgorkhimprom», 2006, 97 p. [In Russ].


13.    Andrejchuk V. Collapse above the world’s largest potash mine (Ural, Russia). International Journal of Speleology. 2002. Vol. 31. No 1. Pp. 8.


14.    Malovichko A. A., Malovichko D. A., Dyagilev R. A., Shulakov D. Y. Multi scale seismicity at potash mines. Fifteen years of seismic monitoring at Verkhnekamskoe Deposit. Rockbursts and seismicity in mine. Obninsk-Perm: 2013. Pp. 463—473.


15.    Owoseni J. O.,Tamarautobou E. U., Asiwaju-Bello Y. A. Application Sequential Analysis and Geographic Information Systems for Hydrochemical Evolution Survej, Shagari Environ, Southwestern Nigeria. Amerikan International Journal of Contemporary Reserch. 2013. Vol. 3. No 3, pp. 38—48.


16.    Hisafumi Asaue, Naoyuki Tadakumsa, Katsuaki Koike. Application of GIS to Hydrogeological Structure Modeling Aimed at Conservation of Groundwater Resources. Geoinformatics. 2014. Vol. 25, Iss. 3. pp. 159—168.


17.    Belkhiri L., Narany T. S. Using multivariate statistical analysis, geostatistical techniques and structural equation modeling to identify spatial variability of Groundwater quality. Water Resources Management. 2015. Vol. 29, Iss. 6. pp. 2073—2089.

Subscribe for our dispatch