Disseminated copper–nickel and low-sulphide platinum-metal ores are the critical source of platinum group metals in Russia. Difficult production of high-quality bulk platinum-metal sulphide concentrates during processing of such ores is connected with the presence of flotation-active silicates (in particular, talc) which dilute concentrates and complicate pyroprocessing. The analyzed methods of reducing recovery of flotation-active silicates in bulk sulphide concentrates during flotation of low-sulphide platinum-metal ore include collector-free flotation of talc and depression of silicates by polymers. It is shown that the collector-free flotation results in considerable loss of valuable components in frother product. The loss is lower with depressants of flotation-active silicates. Out of the tested depressants, the most efficient is the agent Depramin 347 (carboxylmethyl-cellulose) that ensures the best selectivity of sulphide and silicate separation as well as reduction in gangue recovery in bulk concentrate as compared with the agents Depramin 267, dextrin and Akremon D-13. It is revealed that floatability of sulphides is slightly lower with Depramin 347, which, from the measurements of detachment force and electrokinetic potential, is governed by higher wettability of sulphides as a result of adsorption of the depressant at their surface.

For citation: Kuznetsova I. N., Lavrinenko A. A., Shrader E. A., Sarkisova L. M. Reduction in flotationactive silicate recovery in bulk concentrate of low-sulphide platinum-metal ore. Gornyy informatsionno-analiticheskiy byulleten'. 2019;5:200-208. [In Russ]. DOI: 10.25018/0236-1493-2019-05-0200-208.


Low-sulphide platinum-metal ore, talc, collector-free flotation, bulk flotation, wettability, electrokinetic potential, butyl xanthate, Aerophine 3416, silicate depression, carboxyl-methylcellulose, dextrin, Akremon D-13, separation factor.

Issue number: 5
Year: 2019
ISBN: 0236-1493
UDK: 622.75
DOI: 10.25018/0236-1493-2019-05-0-200-208
Authors: Kuznetsova I. N., Lavrinenko A. A., Shrader E. A., Sarkisova L. M.

About authors: A.A. Lavrinenko, Doctor of Technical Sciences, Head of Laboratory, e-mail:, E.A. Shrader, Candidate of Technical Sciences, Leading researcher, e-mail:, L.M. Sarkisova, Candidate of Technical Sciences, Senior researcher, e-mail:, I.N. Kuznetsova, Candidate of Technical Sciences, Senior researcher, e-mail:, Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia. Corresponding author: A.A. Lavrinenko, e-mail:


1.        Nashwa V. M. The flotation of high talc-containing ore from the Great Dyke of Zimbabwe; Masters of Science degree (Metallurgy), Pretoria University, South Africa. 2007, 166 p. available at: (accessed 04.05.2018).

2.        Sebia Pikinini. Reducing the magnesium oxide content in trojan’s nickel final concentrates / School of Chemical and Metallurgical Engineering, Faculty of Engineering and Built in Environment, University of Witwatersrand, Johannesburg, South Africa. 2016, 90 p. available at: http:// Sebia%20%283%29%20corrected.pdf?sequence=2&isAllowed=y (accessed 02.05.2018).

3.        Blatov I. A. Obogashchenie medno-nikelevykh rud [Обогащение медно-никелевых руд], Moscow, Izdatel'skiy dom «Ruda i metally», 1998, 224 p.

4.        Srdyan M. Bulatovic. Handbook of Flotation Reagents: Chemistry, Theory and Practice. 1st Edition. Vol. 2: Flotation of Gold, PGM and Oxide Minerals. Amsterdam: Elsevier Science. 2010. 230 р.

5.        Wei Deng, Longhua Xu, Jia Tian, Yuehua Hu, Yuexin Han. Flotation and Adsorption of a New Polysaccharide Depressant on Pyrite and Talc in the Presence of a Pre-Adsorbed Xanthate Collector. Minerals. 2017, Vol. 7, No 3, 14 p.

6.        Zhao K., Gu G., Wang C., Rao X., Wang X., Xiong X. The effect of a new polysaccharide on the depression of talc and the flotation of a nickel-copper sulfide ore. Mineral Engineering. 2015, Vol. 77, pp. 99—105.

7.        Matveeva T. N., Ivanova T. A., Gromova N. K., Lantsova L. B. Scientific prediction recovery and technological research of flotation extraction of precious metals from refractory ores using plant modifiers. IX Kongress obogatiteley stran SNG. Sbornik materialov. Vol. II, Moscow, MISiS, 2013, pp. 387—390. [In Russ].

8.        Guo Qian, Feng Bo, Zhang Danping, Guo Jujie. Flotation separation of chalcopyrite from talc using carboxymethyl chitosan as depressant. Physicochem. Probl. Miner. Process. 2017, Vol. 53, no 2, pp. 1255—1263.

9.        Timoshenko A. L., Oparina L. A., Samoylova V. G., Markisyan S. M., Trofimov V. A. Modified lignins as depressant reagents for flotation concentration of disseminated copper-nickel ores. Khimiya v interesakh ustoychivogo razvitiya. 2011, no 19, pp. 421—425. [In Russ].

10.    Morris G. E., Fornasiero D., Ralston J. Polymer depressants at the talc—water interface: adsorption isotherm, microflotation and electrokinetic studies. Int. J. Miner. Process., 2002, Vol. 67, pp. 211—227.

11.    Beattie David A., Huynh Le, Kaggwa Gillian B. N., Ralston John.The effect of polysaccharides and polyacrylamides on the depression of talc and the flotation of sulphide minerals. Minerals Engineering. 2006, Vol. 19, no 6—8, pp. 598—608.

12.    Chen H. T., Ravishankar S. A., Farinato R. S. Rational polymer design for solid-liquid separations in mineral processing applications. Int. J. Miner. Process. 2003. Vol. 72, pp. 75—86.

13.    Khraisheh M., Holland C., Creany C., Harris P., Parolis L. Effect of molecular weight and concentration on the adsorption of CMC onto talc at different ionic strengths. Int. J. Miner. Process., 2005, Vol. 75, pp. 197—206.

14.    Parolis L. A. S., van der Merwe R., Groenmeyer G. V., Harris P. J. The influence of metal cations on the behaviour of carboxymethyl celluloses as talc depressants. Colloids Surfaces A Physicochem. Eng. Asp. 2008, Vol. 317, pp. 109—115. doi: 10.1016.

15.    Neradovskiy Yu. N., Rundkvist T. V., Galkin A. S., Kliment'ev V. N. To the problem of platinum-bearing ore stratum 330 g. Sopcha and its industrial use (Monchegorski pluton). Vestnik Murmanskogo gosudarstvennogo tekhnicheskogo universiteta. 2002. Vol. 5, no 1, pp. 85—90. [In Russ].

16.    Mukhina T. N., KHashkovskaya T. N., Marchevskaya V. V., Maksimov V. I., Kozyrev S. M. Mineralogical and technological tests of platinum metal low-sulphide ores of the Vurachuayvench massif. Sovremennye problemy obogashcheniya i glubokoy kompleksnoy pererabotki mineral'nogo syr'ya (Plaksinskie chteniya): Mezhdunarodnoe soveshchanie (Vladivostok, 16— 21 September 2008). Part 2. Vladivostok: Tikhookeanskaya akademiya nauk ekologii i bezopasnosti zhiznedeyatel'nosti, 2008, pp. 397—399. [In Russ].

17.    Lavrinenko A. A., Makarov D. V., Shrader E. A., Sarkisova L. M., Kuznetsova I. N. Флотация малосульфидной платинометалльной медно-никелевой оталькованной руды. Nauchnye osnovy i praktika pererabotki rud i tekhnogennogo syr'ya: XXIII Mezhdunarodnaya nauchno-tekhnicheskaya konferentsiya (Ekaterinburg, 10—23 April 2018). Ekaterinburg, Izd-vo «Fort Dialog-Iset'», 2018, pp. 25—29. [In Russ].

18.    Chanturiya V. A., Nedosekina T. V., Fedorov A. A. Some features of the interaction of sulfhydryl collectors of the class of xanthates and dithiocarbamate with pyrite and arsenopyrite. Tsvetnye metally. 2000, no 5, pp. 12—15. [In Russ].

19.    Barskiy L. A., Rubinshteyn Yu. B. Kiberneticheskie metody v obogashchenii poleznykh iskopaemykh [Cybernetic methods in the ore dressing], Moscow, Nedra, 1970, pp. 90—92.

20.    Saltykov P. M., Kalashnikova M. I., Saltykova E. G. Hydrometallurgical technology for processing of non-ferrous pentlandite-pyrrhotite sulfide concentrates with high recovery of platinumgroup metals. Tsvetnye metally. 2014, no 9, pp. 75—81. [In Russ].

Subscribe for our dispatch