The article considers the climatic conditions of coal mining and transportation in the regions of the Arctic and the Far North. It is shown that during the spring and autumn periods, coals can be exposed to multiple freezing and thawing, which determines the possibility of changing the structural and mechanical properties of coal and their quality in general. Experimental studies of the effect of cyclic freeze-thawing (CFT) on the quality indices of coals of different types and their fractured-porous structure have been carried out. CFT conditions were as follows: the minimum exposure temperature is –40 °C, maximum + 5 °C, relative humidity 70%, number of cycles varied from 1 to 4. It is shown that under given conditions of the cyclic impacts, there exists a change in the fractured-porous structure of lignite and hard coals. It is found that, with the increase in the number of CFT cycles, a change occurs in the gross calorific value of coals (on dry ash-free basis of the fuel) as compared to the untreated ones. It has been established that cyclic freezing and thawing of lignite leads to a decrease in its total and, especially, the analytical moisture contents. At the same time, a significant increase in the net calorific value of lignite was noted, which, in the most general case, may be associated with a decrease in its moisture content.

Acknowledgements: This work was financially supported by the Russian Foundation of Fundamental Research (grant No 18-05-70002).

For citation: Epshtein S. A., Nikitina I. M., Agarkov K. V., Nesterova V. G., Minaev V. I. Effects of cyclic freezing and thawing on coals quality indices. MIAB. Mining Inf. Anal. Bull. 2019;(6):5-18. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-5-18.


Сoal, cryogenic weathering, freeze-thaw cycle, quality, fracturing.

Issue number: 6
Year: 2019
ISBN: 0236-1493
UDK: 552.57+54.03
DOI: 10.25018/0236-1493-2019-06-0-5-18
Authors: Epshtein S. A., Nikitina I. M., Agarkov K. V., etc.

About authors: S.A. Epshtein, Dr. Sci. (Eng.), Head of Laboratory, e-mail: apshtein@yandex.ru, I.M. Nikitina, Cand. Sci. (Eng.), Leading Engineer, K.V. Agarkov, Engineer, V.G. Nesterova, Cand. Sci. (Eng.), Leading Engineer, V.I. Minaev, Cand. Sci. (Eng.), Leading Engineer, National University of Science and Technology «MISiS», Scientific and Training Laboratory of Physics and Chemistry of Coals, 119049, Moscow, Russia. Corresponding author: S.A. Epshtein, e-mail: apshtein@yandex.ru.


1. Scibioh M. A., Viswanathan B. CO2 — Capture and Storage. Carbon Dioxide to Chemicals and Fuels, Elsevier, 2018, pp. 61—130. DOI: 10.1016/B978-0-444-63996-7.00003-1.

2. Wen H., Li Z., Deng J., Shu C. M., Laiwang B., Wang Q., Ma L. Influence on coal pore structure during liquid CO2-ECBM process for CO2 utilization. Journal of CO2 Utilization, 2017. Vol. 21, pp. 543—552. DOI: 10.1016/j.jcou.2017.09.002.

3. Qu H., Liu J., Chen Z., Wang J., Pan Z., Connell L., Elsworth D. Complex evolution of coal permeability during CO 2 injection under variable temperatures. International Journal of Greenhouse Gas Control, 2012. Vol. 9, pp. 281—293. DOI: 10.1016/j.ijggc.2012.04.003.

4. Xu J., Zhai C., Liu S., Qin L., Wu S. Pore variation of three different metamorphic coals by multiple freezing-thawing cycles of liquid CO2 injection for coalbed methane recovery. Fuel, 2017. Vol. 208, pp. 41—51. DOI: 10.1016/j.fuel.2017.07.006.

5. Astakhov A. V., Belyj A. A., Shirochin D. L. Study of coal structure by swelling technique. Khimiya tverdogo topliva. 2002, no 2, pp. 3—10.

6. Qin L., Zhai C., Liu S., Xu J. Factors controlling the mechanical properties degradation and permeability of coal subjected to liquid nitrogen freeze-thaw. Scientific Reports, 2017. Vol. 7, no 1, pp. 3675. DOI: 10.1038/s41598-017-04019-7.

7. Cai C., Li G., Huang Z., Tian S., Shen Z., Fu X. Experiment of coal damage due to supercooling with liquid nitrogen. Journal of Natural Gas Science and Engineering, 2015. Vol. 22, pp. 42—48. DOI: 10.1016/j.jngse.2014.11.016.

8. Cai C., Gao F., Li G., Huang Z., Hou P. Evaluation of coal damage and cracking characteristics due to liquid nitrogen cooling on the basis of the energy evolution laws. Journal of Natural Gas Science and Engineering, 2016. Vol. 29, pp. 30—36. DOI: 10.1016/j.jngse.2015.12.041.

9. Qin L., Zhai C., Liu S., Xu J., Yu G., Sun Y. Changes in the petrophysical properties of coal subjected to liquid nitrogen freeze-thaw . A nuclear magnetic resonance investigation. Fuel, 2017. Vol. 194, pp. 102—114. DOI: 10.1016/j.fuel.2017.01.005.

10. Zhai C., Wu S., Liu S., Qin L., Xu J. Experimental study on coal pore structure deterioration under freeze—thaw cycles. Environmental Earth Sciences, 2017. Vol. 76, no 15, pp. 507. DOI: 10.1007/s12665-017-6829-9.

11. Liu S. Q., Sang S. X., Liu H. H., Zhu Q. P. Growth characteristics and genetic types of pores and fractures in a high-rank coal reservoir of the southern Qinshui basin. Ore Geology Reviews,  2015. Vol. 64, no 1, pp. 140—151. DOI: 10.1016/j.oregeorev.2014.06.018.

12. Yu Y., Liang W., Hu Y., Meng Q. Study of micro-pores development in lean coal with temperature. International Journal of Rock Mechanics and Mining Sciences, 2012. Vol. 51, pp. 91—96. DOI: 10.1016/j.ijrmms.2012.01.010.

13. Sun Y., Zhai C., Qin L., Xu J., Yu G. Coal pore characteristics at different freezing temperatures under conditions of freezing—thawing cycles. Environmental Earth Sciences, 2018. Vol. 77, no 13, pp. 525. DOI: 10.1007/s12665-018-7693-y.

14. Singh V., Saxena V. K., Raj R., Venugopal R. Artificial weathering of coal to enhance milling performance. Fuel, 2015. Vol. 142, pp. 117—120. DOI: 10.1016/j.fuel.2014.11.016.

15. Ugol'naya baza Rossii. Pod red. A. A. Timofeeva [Coal base of Russia. Timofeev A. A. (Ed.)], Vol. 1—6, Moscow, Geoinformtsentr, 2001.

16. Reliable Prognosis [Electronic resource]. URL: rp5.ru.

17. Fedorova S. E. Problems of fire and ecological safety of cryolite-zone coal deposits development. Gornyy informatsionno-analiticheskiy byulleten’. 2009, no S12, pp. 329—333. [In Russ].

18. Fedorova S. E. Forecast and prevention of the endogenous fire hazard of coal deposits in the cryolithozone. Gornyy informatsionno-analiticheskiy byulleten’. 2007, no S14, pp. 206—209. [In Russ].

19. Deng J., Xiao Y., Li Q., Lu J., Wen H. Experimental studies of spontaneous combustion and anaerobic cooling of coal. Fuel, 2015. Vol. 157, pp. 261—269. DOI: 10.1016/j.fuel.2015.04.063.

20. Novikov E. A., Shkuratnik V. L., Epshtein S. A., Nesterova V. G., Dobryakova N. N. The possibility of estimation of coal oxidation by using acoustic emission, stimulated in it by thermal shock Gornyy informatsionno-analiticheskiy byulleten’. 2013, no 8, pp. 90—96. [In Russ].

21. Novikov E. A., Dobryakova N. N., Shkuratnik V. L., Epshtein S. A. Methods of coal oxidation estimation. Gornyy Zhurnal. 2015. Т. 2015, no 5, pp. 30—36. DOI: 10.17580/gzh.2015.05.06.

[In Russ].

22. Loginov M. I., Gordeev I. V., Mikerova V. N., Starokozheva G. I. State, problems and prospects of development of the coal resource base. Mineral'nye resursy Rossii. Ekonomika i upravlenie. 2017, no 3, pp. 52—61. [In Russ].

23. Nikulin A. A. Problemy natsional'noy strategii [Problems of national strategy]. Poleznye iskopaemye Arkticheskoy zony Rossii: potentsial i perspektivy osvoeniya. 2017, no 1, pp. 163—187. [In Russ].

24. Razovskiy Yu.V., Gorenkova E.Yu., Kiseleva S. P., Kosyakova I. V., Makolova L. V. Coal Arctic revenue: classification and assessment methodology. Ugol’. 2018, no 7, pp. 42—44. [In Russ].

25. Agarkov S. A., Kozmenko S.Yu., Matviishin D. A. Economic development of arctic coal deposits: features of maritime transportation. Izvestiya Sankt-Peterburgskogo gosudarstvennogo

ekonomicheskogo universiteta. 2018, no 5, pp. 105—112. [In Russ].

26. Ryazanova N. E., Solomatov A. S., Sazonov A. A., Nikolsky N. V., Kolodkin P. A., Kukushkin V. M., Kulikov M. E. Full-scale hydrometeorological research in the expeditionary conditions in the Arctic zone. Kompleksnaya nauchno-obrazovatel'naya ekspeditsiya «Arkticheskiy plavuchiy universitet-2016», 2016, pp. 24—37. [In Russ].

Mining World Russia
Subscribe for our dispatch