Samples of the Pechora basin coal are tested with the pre-determined uniaxial compression strength in the normal direction to bedding. The test data show that different samples have close values of the uniaxial compression strength. The laser–ultrasonic spectroscopy in the mode of automatic scanning of coal sample surface at a pitch of 1 mm visualizes the internal structure of coal. It is found that in the vertical sections of the samples, cracks are mostly horizontal in conformity with the direction of bedding. The geometrical dimension and depth of cracks are determined. Based on the precision measurements of Pand S-wave velocities, the local values of Young’s modulus and Poisson’s ratio are for the first time obtained for coal accurate to 1 and 5%, respectively. The presence of cracks from 0.5 to 3 mm long with an opening of 80–200 μm results in dispersion of Young’s modulus and Poisson’s ratio in the ranges from 6.81 to 7.25 GPa and from 0.23 to 0.29. By the calculated values, the map of Young’s modulus distribution over sample surface is plotted.

Acknowledgements: This study was supported by the Russian Foundation for Basic Research, Project No. 19-05-00824.

For citation: Kravtsov A., Ivanov P. N., Malinnikova O. N., Cherepetskaya Е. B., Gapeev A. A. Laser–ultrasonic spectroscopy of the Pechora basin coal microstructure. MIAB. Mining Inf. Anal. Bull. 2019;(6):56-65. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-56-65.


Laser–ultrasonic structurescopy, X-ray tomography, coal, geodynamic phenomena, methane, local elasticity moduli.

Issue number: 6
Year: 2019
ISBN: 0236-1493
UDK: 622.33+620.179.16
DOI: 10.25018/0236-1493-2019-06-0-56-65
Authors: Kravtsov A., Ivanov P. N., Malinnikova O. N., etc.

About authors: A. Kravtsov, PhD, e-mail:, Department of Construction Technology, Faculty of Civil Engineering in Prague, Thákurova 7/2077, 166 29 Prague 6 — Dejvice, Czech Republic, P.N. Ivanov (1), Engineer, e-mail:, O.N. Malinnikova, Dr. Sci. (Eng.), e-mail:, Institute of Problems of Comprehensive Exploitation of Mineral Resources of Russian Academy of Sciences, 111020, Moscow, Russia, Е.B. Cherepetskaya (1), Dr. Sci. (Eng.), Chief Researcher, e-mail:, A.A. Gapeev (1) — Student, e-mail:, 1) Mining Institute, National University of Science and Technology «MISiS», 119049, Moscow, Russia. Corresponding author: P.N. Ivanov, e-mail:


1. Malyshev Yu. N., Ayruni A. T., Khudin Yu. L. Metody prognozirovaniya i sposoby predotvrashcheniya vybrosov gaza, uglya i gornykh porod [Gas, coal and rock outbursts: prediction methods and prevention techniques], Moscow, Nedra, 1995, 352 p.

2. Prognoz i predotvrashchenie gornykh udarov v shakhtakh [Prediction and prevention of rock bursts in mines. I.Kh. Petukhov, A.M. Il'in, K. N. Trubetskaya (Eds.)], Moscow, Izdatel'stvo AGN, 1997, 376 p.

3. Malinnikova O. N., Uchaev D. M., Uchaev D. V. Multi-fractal assessment of gas-dynamic hazard of coal seams. Gornyy informatsionno-analiticheskiy byulleten’. 2009, no 12, pp. 214—232. [In Russ].

4. Gornoe delo. Dinamicheskie yavleniya v ugol'nykh shakhtakh. Terminy i opredeleniya. GOST R 58150-2018 [Mining. Dynamic phenomena in coal mines. Terms and definitions. State Standart R 58150-2018].

5. Starikov A. P., Zborshchik M. P., Pilyugin V. I. Gas-dynamic phenomena in coal mines: implications, control and hazard reduction. Ugol'. 2010, no 12, pp. 5—8. [In Russ].

6. Kuchurin S. V., Shkuratnik V. L., Vinnikov V. A. Regularities of influence of disturbances on thermal emission memory in coal specimens. Journal of Mining Science, 2008, 44 (2), pp. 131—137.

7. Guo W.-Y., Zhao T.-B., Tan Y.-L., Yu, F.-H. Hu, S.-C. Yang F.-Q. Progressive mitigation method of rock bursts under complicated geological conditions. International Journal of Rock Mechanics and Mining Sciences, 2017, pp. 11—22.

8. Lihai Tan, Ting Ren, Xiaohan Yang, Xueqiu He. A numerical simulation study on mechanical behaviour of coal with bedding planes under coupled static and dynamic load. International Journal of Mining Science and Technology, 28 (2018), pp. 791—797.

9. Dudchenko O. L., Fedorov G. B., Andreev A. A. Innovative method for the classification of coal slurries. Ugol', 6 (2018), pp. 67—71.

10. Yang W., Wang H., Lin B., Wang Y., Mao X., Zhang J., Lyu Y., Wang M. Outburst mechanism of tunnelling through coal seams and the safety strategy by using «strong-weak» coupling circlelayers. Tunnelling and Underground Space Technology, 2018, 74, pp. 107—118.

11. Yang S.-Q., Chen M., Jing H.-W., Chen K.-F., Meng B. A case study on large deformation failure mechanism of deep soft rock roadway in Xin'An coal mine, China. Engineering Geology2017, 217, pp. 89—101.

12. Oparin V. N., Kiryaeva T. A., Usol'tseva O. M., Tsoy P. A., Semenov V. N. Nonlinear deformation–wave processes in various rank coal samples loading to failure under different temperatures. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2015, no 4, pp. 641—658. [In Russ].

13. Qin Zhihong New advances in coal structure model. International Journal of Mining Science and Technology, 2018, pp. 541—559.

14. Qin Z.-H., Gong T., Li X.-S., Hou C.-L., Zhang D., Sun H. TEM analysis of coal extraction and coal inbuilt state structural model. Zhongguo Kuangye Daxue Xuebao. Journal of China University of Mining and Technology, 2008, 37 (4), pp. 443—449.

15. Jonathan P. Mathewsa, Quentin P. Campbellb, Hao Xuc, Phillip Halleck. A review of the application of X-ray computed tomography to the study of coal. Fuel, 2017, pp. 10—24.

16. Zhang G., Ranjith P. G., Perera M. S. A., Haque A., Choi X., Sampath. Characterization of coal porosity and permeability evolution by demineralisation using image processing techniques. A micro-computed tomography study. Journal of Natural Gas Science and Engineering, 2018, pp. 384—396.

17. Vaysberg L. A., Kameneva Е. Е. Взаимосвязь структурных особенностей и физико-механических свойств горных пород. Gornyy zhurnal. 2017, no 9, pp. 53—58. [In Russ].

18. Haibo Wu, Shouhua Dong, Donghui Li, Yaping Huang, Xuemei Qi Experimental study on dynamic elastic parameters of coal samples. International Journal of Mining Science and Technology, 2015, vol. 25, no. 3, pp. 447—452.

19. Podymova N. B., Karabutov A. A., Cherepetskaya E. B. Laser optoacoustic method for quantitative nondestructive evaluation of the subsurface damage depth in ground silicon wafers. Laser Physics, 2014, Vol. 24, no. 8, pp. 086003(1)–086003(5).

20. Kravcov A., Svoboda P., Konvalinka A., Cherepetskaya E. B., Karabutov A. A., Morozov D. V., Shibaev I. A. Laser-ultrasonic testing of the structure and properties of concrete and carbon fiber-reinforced plastics. Key Engineering Materials, 2017, 722, pp. 267—272.

21. Karabutov A. A., Cherepetskaya E. B., Podymova N. B. Laser-ultrasonic measurement of local elastic moduli. NDT in Progress 2015. 8th International Workshop of NDT Experts, Proceedings, 2015, pp. 75—78.

Subscribe for our dispatch