Currently, ultimate pit limit designs for large and medium-size surface mines widely use mining and geological information systems providing optimized pit limits from block modeling. For the lack of the procedures for project pit limit construction based on the optimized pit limit, economic evaluations of the optimized and project pit limits may differ up to 10%. The difference can be connected with extra stripping or loss of some mineral reserves under haulage berms during access road pattern generation. This article describes the procedure and findings of the research into influence exerted by the access road pattern on the mined rock volume within the ultimate pit limit. The analytical pit model, including critical parameters of access road pattern, and the modeling results for different depth pits are presented. The results of modeling the same pit limits with the access road pattern using Micromine’s mining and geology information system are reported. The research data are given in the form of the plots of varying mined rock volume within the ultimate pit limits depending on the access road pattern at different parameters of the pit elements. It is found that the worst deviation from the optimized ultimate pit limits develops in the pits 150–200 to 400–500 m deep and reaches 30–40%.

For citation: Fedotov G. S., Pastikhin D. V. Influence of access road pattern on mine rock volume within the ultimate pit limit. MIAB. Mining Inf. Anal. Bull. 2019;(6):115-123. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-115-123.


Mining and geology information system, optimized ultimate pit limit, project ultimate pit limit, stripping ratio, economic evaluation, open pit mine planning and design, block model, haulage berm.

Issue number: 6
Year: 2019
ISBN: 0236-1493
UDK: 622.
DOI: 10.25018/0236-1493-2019-06-0-115-123
Authors: Fedotov G. S., Pastikhin D. V.

About authors: G.S. Fedotov, Graduate Student, e-mail:, D.V. Pastikhin, Cand. Sci. (Eng.), Assistant Professor, National University of Science and Technology «MISiS», 119049, Moscow, Russia. Corresponding author: G.S. Fedotov, e-mail:


1. Rzhevskiy V. V. Otkrytye gornye raboty. Ch. 2 [Open pit mining. Part 2], Moscow, Nedra, 1985, 509 p.

2. Arsent'ev A. I. Opredelenie proizvoditel'nosti i granits kar'erov [Determination of capacity and limits of open pit mines], Moscow, Nedra, 1970, 319 p.

3. Arsent'ev A. I., Kholodnyakov G. A. Proektirovanie gornykh rabot pri otkrytoy razrabotke mestorozhdeniy [Open pit mine planning and design], Moscow, Nedra, 1994, 336 p.

4. Metodicheskie rekomendatsii po tekhniko-ekonomicheskomu obosnovaniyu konditsiy dlya podscheta zapasov mestorozhdeniy tverdykh poleznykh iskopaemykh (krome ugley i goryuchikh slantsev). Utverzhdeny rasporyazheniem MPR Rossii ot 05.06.2007 g. № 37-r [Guidelines on technical and economic assessment of appraisal criteria for solid mineral reserves (except for coal and oil shale). Approved by the Ministry of Natural Resources and Environment of the Russian Federation, Order No. 37-r as of June 5, 2007], Moscow, 2007, 49 p.

5. Trubetskoy K. N., Potapov M. G., Vinitskiy K. Е. Spravochnik. Otkrytye gornye raboty [Open pit mining], Moscow, Gornoe Byuro, 1994, 590 p.

6. Richmond A. Direct Net Present Value Open Pit Optimisation with Probabilistic Models. Advances in Applied Strategic Mine Planning, 2018, Springer. pp. 217—228.,

7. Hall B. E. Cut-off Grades and Optimizing the Strategic Mine Plan. Melbourne: The Australasian Institute of Mining and Metallurgy, 2014. 311 p.

8. Kaputin Yu. Е. Veroyatnostnoe strategicheskoe planirovanie razvitiya kar'erov [Probabilistic strategic planning of open pit mine expansion], Saint-Petersburg, Nedra, 2019, 320 p.

9. Kaputin Yu. Е. Obosnovanie bortovogo soderzhaniya i optimizatsiya strategii razvitiya otkrytykh gornykh rabot [Validation of cutoff-grade and optimization of open pit mining strategy], Saint-Petersburg, Nedra, 2017, 280 p.

10. Dimitrakopoulos R. Stochastic Mine Planning — Methods, Examples and Value in an Uncertain World. Advances in Applied Strategic Mine Planning, 2018, Springer, pp. 101—115.,

11. Grigorovskiy I. A. Capabilities of mining and geology information system Micromine in mine planning and design. Innovatsionnye geotekhnologii pri razrabotke rudnykh i nerudnykh mestorozhdeniy. Sbornik dokladov VI Mezhdunarodnoy nauchno-tekhnicheskoy konferentsii. 2017, pp. 76—80. [In Russ].

12. Protsenko A. V., Bayrov Zh. B., Fedotov G. S., Zartenova L. G. Use of economic indicators in medium-term mine planning in geological and mining information system Micromine. Gornyy

informatsionno-analiticheskiy byulleten’. 2018, no 8, pp. 208—216. DOI: 10.25018/0236-1493-2018-8-0-208-216. [In Russ].

13. Protsenko A. V., Bayrov Zh. B., Zartenova L. G., Protsenko N. V. Operational planning algorithm with Micromine software in underground mines. Sbornik materialov XXXVII Mezhdunarodnoy nauchno-prakticheskoy konferentsii. 2017, pp. 143—149

14. Appianing E. J. A., Mireku-Gyimah D. Open Pit Optimisation and Design: A Stepwise Approach. Ghana Mining Journal, 2015, Vol. 15, No. 2, pp. 27—35.

Mining World Russia
Subscribe for our dispatch