DESIGN BASIS FOR TUNNEL BORING MACHINE CUTTER HEADS

Various-purpose tunnel construction in Russia uses mostly foreign manufacture equipment. In this respect, the article discusses the problem of Russia’s lack of experience in design of shielded tunnel boring machines. The main technological and design parameters of TBMs to be included in the design calculations are presented. It is emphasized that pattern array of rock-breaking tools on the cutter head in many ways governs the machine efficiency. It is proposed to calculate forces on the TBM cutter head equipped with the constant cross section (CCS) disc cutters using the Colorado School of Mines (USA) model. The essence and relations within this model are described. The aspect of the rock-breaking tool arrangement on the cutter heard is discussed. The negative consequences of wrong or improper choice of a setout, e.g. increased wear of bearing assembly or cutters, are illustrated. The main schemes and relations, that allow proper arrangement of cutters on the cutter head and are applicable in automated design systems, are presented.


For citation: Zhabin A. B., Polyakov A. V., Averin E. A., Linnik Yu. N. Design basis for tunnel boring machine cutter heads. MIAB. Mining Inf. Anal. Bull. 2019;(6):156-164. [In Russ]. DOI: 10.25018/0236-1493-2019-06-0-156-164.

Keywords

Shielded tunnel boring machine, TBM assembly, cutter head, CCS disc cutter, force calculation, Colorado School of Mines model, cutter arrangement schemes, design calculation.

Issue number: 6
Year: 2019
ISBN: 0236-1493
UDK: 624.191.6:622
DOI: 10.25018/0236-1493-2019-06-0-156-164
Authors: Zhabin A. B., Polyakov A. V., Averin E. A., Linnik Yu. N.

About authors: A.B. Zhabin (1,2), Dr. Sci. (Eng.), Professor, Full Member of the Academy of Mining Sciences, President of the Tula Regional Department of the Academy of Mining Sciences, e-mail: zhabin.tula@mail.ru, A.V. Polyakov (1,2), Dr. Sci. (Eng.), Professor, Academic Advisor of the Academy of Mining Sciences, e-mail: polyakoff-an@mail.ru, E.A. Averin, Cand. Sci. (Eng.), Engineer-Designer, e-mail: evgeniy.averin.90@mail.ru, OOO Skuratovsky Experimental Plant, 300911, Tula, Russia, Yu.N. Linnik, Dr. Sci. (Eng.), Professor, e-mail: vy_linnik@guu.ru, State University of Management, 109542, Moscow, Russia, 1) Tula State University, 300012, Tula, Russia, 2) Tula Regional Department of the Academy of Mining Sciences, 300028, Tula, Russia. Corresponding author: A.V. Polyakov, e-mail: polyakoff-an@mail.ru.

REFERENCES:

1. Yungmeyster D. A., Yacheykin A. I. Modernization of Executive Device of the Tunnel-Boring Mechanized Herrenknecht S-782 Complex. Gornoe oborudovanie i elektromekhanika. 2017, no 3, pp. 3—7. [In Russ].

2. Roby J., Willis D. Achieving fast EPB advance in mixed ground. A study of contributing factors. Proc. North American Tunneling. 2014. Pp. 182—194.

3. Gerasimova V. Underground Engineering and Trenchless Technologies at the Defense of Environment. Procedia Engineering. 2016, vol. 165, pp. 1395—1401. DOI: 10.1016/j.proeng.2016.11.870.

4. Antipov V. V., Antipov Yu. V., Naumov Yu. N. KTPM-5,6/6,0 Complex: New Step in Design of Domestic Techniques for Underground Tunnel Building. Gornoe oborudovanie i elektromekhanika. 2012, no 4, pp. 23—26. [In Russ].

5. Zhao J., Gong Q. M., Eisensten Z. Tunnelling through a frequently changing and mixed ground. A case history in Singapore. Tunnelling and Underground Space Technology. 2007, vol. 22, no 4, pp. 388—400. DOI: 10.1016/j.tust.2006.10.002.

6. Balci C., Tumac D. Investigation into the effects of different rocks on rock cuttability by a V-type disc cutter. Tunnelling and underground space technology. 2012, vol. 30, pp. 183—193. DOI: 10.1016/j.tust.2012.02.018.

7. Li F. H., Cai Z. X., Kang Y. L. A theoretical model for estimating the wear of the disc cutter. Applied mechanics and materials. 2011, vol. 90, pp. 2232—2236. DOI: 10.4028/www.scientific. net/AMM.90-93.2232.

8. Rostami J. Study of pressure distribution within the crushed zone in the contact area between rock and disc cutters. International Journal of Rock Mechanics and Mining Sciences. 2013, vol. 57, pp. 172—186. DOI: 10.1016/j.ijrmms.2012.07.031.

9. Cho J. W., Jeon S., Yu S. H., Chang S. H. Optimum spacing of TBM disc cutters. A numerical simulation using the three-dimensional dynamic fracturing method. Tunnelling and Underground Space Technology. 2010, vol. 25, no 3, pp. 230—244. DOI: 10.1016/j.tust.2009.11.007.

10. Yagiz S. Utilizing rock mass properties for predicting TBM performance in hard rock condition. Tunnelling and Underground Space Technology. 2008, vol. 23, no 3, pp. 326—339. DOI: 10.1016/j.tust.2007.04.011.

11. Zhabin A. B., Polyakov A. V., Averin E. A. Comparison of methods to calculate forces on frontal disc cutters in rock breaking process in Russia and abroad. Gornyy zhurnal. 2018, no 12, pp. 65—68. DOI: 10.17580/gzh.2018.12.13. [In Russ].

12. Zhabin A. B., Polyakov An.V., Polyakov Al.V., Fomichev A. D., Antipov Yu. V. Calculation of a Rotory Executive Body for Tunneling Complex KTPM-6.0. Gornoe oborudovanie i elektromekhanika. 2012, no 2, pp. 16—23. [In Russ].

13. Bruland A. Hard rock tunnel boring: PhD Thesis. Trondheim, Norway: Norwegian University of Science and Technology, 1998.

14. Macias F. J. Hard Rock Tunnel Boring: Performance Predictions and Cutter Life Assessments: PhD Thesis. Trondheim, Norway: Norwegian University of Science and Technology, 2016.

15. Rostami J. Development of a force estimation model for rock fragmentation with disccutters through theoretical modeling and physical measurement of crushed zone pressure: PhD Thesis. Golden, Colorado, USA: Colorado School of Mines, 1997.

16. Balci C. Correlation of rock cutting tests with field performance of a TBM in a highly fractured rock formation. A case study in Kozyatagi-Kadikoy metro tunnel, Turkey. Tunnelling and Underground Space Technology. 2009, vol. 24, no 4, pp. 423—435. DOI: 10.1016/j.tust.2008.12.001.

17. Tumac D., Balci C. Investigations into the cutting characteristics of CCS type disc cutters and the comparison between experimental, theoretical and empirical force estimations. Tunnelling and Underground Space Technology. 2015, vol. 45, pp. 84—98. DOI: 10.1016/j.tust.2014.09.009.

18. Rostami J., Chang S. H. A Closer Look at the Design of Cutterheads for Hard Rock Tunnel-Boring Machines. Engineering. 2017. Т.3, no 6, pp. 892—904. DOI: 10.1016/j.eng.2017.12.009.

19. Frenzel C., Käsling H., Thuro K. Factors influencing disc cutter wear. Geomechanik und Tunnelbau. 2008, vol. 1, no 1, pp. 55—60. DOI: 10.1002/geot.200800006.

20. Zhabin A. B., Polyakov An. V., Polyakov Al. V., Murashov V. V. Optimization of cutter pattern on cutting heads of continuous heading machines. Gornyy zhurnal. 2016, no 12, pp. 73—82. DOI: 10.17580/gzh.2016.12.16. [In Russ].

21. Huo J., Sun W., Chen J., Zhang X. Disc cutters plane layout design of the full-face rock tunnel boring machine (TBM) based on different layout patterns. Computers & industrial engineering. 2011, vol. 61, no 4, pp. 1209—1225. DOI: 10.1016/j.cie.2011.07.011.

22. Huo J., Hanyang W., Jing Y., Wei S., Guangqing L., Xiaolong S. Multi-directional coupling dynamic characteristics analysis of TBM cutterhead system based on tunnelling field test. Journal of mechanical science and technology. 2015, vol. 29, no 8, pp. 3043—3058. DOI: 10.1007/s12206-015-0701-1.

23. Han M. D., Cai Z. X., Qu C. Y., Jin L. S. Dynamic numerical simulation of cutterhead loads in TBM tunnelling. Tunnelling and Underground Space Technology. 2017, vol. 70, pp. 286—298. DOI: 10.1016/j.tust.2017.08.028.

24. Chen Y., Wei T., Gong T. Research on optimal layout of cutter-head system of rock tunnel-boring machine based on Archimedes spiral theory. Advances in Mechanical Engineering. 2018, vol. 10, no 2, pp. 1—10. DOI: 10.1177/1687814018759352.

25. Geng Q., Bruland A., Macias F. J. Analysis on the relationship between layout and consumption of face cutters on hard rock tunnel boring machines (TBMs). Rock Mechanics and Rock Engineering. 2018, vol. 51, no 1, pp. 279—297. DOI:10.1007/s00603-017-1320-1.

Subscribe for our dispatch