MONITORING OF BENTONITE DEAD WEIGHT IN SHIELD TUNNELING

This article discusses potential expansion of monitoring capabilities in tunneling in watercut unstable soil with compensation of rock pressure in tunnel heading by the supporting medium backpressure created by bentonite suspension (hydro dead weight). In the tunneling site between metro stations Lefortovo and Aviamotornaya in Moscow, the bentonite dead weight is calculated by the procedure determining excess factor of the compensation backpressure over the pressure from the soil mass in the face zone. Sample results of discrete–continuous monitoring of thrust load on the tunneling machine rotor are discussed. The monitoring data are used to find changes in the indices of limiting stress state of soil, soil mass quality and ground water saturation rate, as well as to maintain the dead weight pressure at the preset value. It is assessed whether it is possible to determine actual load from soil for correlating with the compensation backpressure of bentonite suspension. It is found that in tunneling in sand, it is sufficient to maintain the compensation pressure excess factor higher than 1 in order to prevent from soil face displacement at breaks in the tunneling process. The lower backpressure excess factor will result in the increased load on the rotor drive during breaks.


For citation: Mazein S.V,, Voznesenskiy A. S., Pankratenko A. N. Monitoring of bentonite dead weight in shield tunneling. MIAB. Mining Inf. Anal. Bull. 2019;(7):13-29. [In Russ]. DOI: 10.25018/02361493-2019-07-0-13-29.


Acknowledgements: The study was supported by Mosinzhproekt.

Keywords

Тunnel, tunnel boring machine, hydro dead weight, bentonite suspension, load, rotor, dead weight pressure, discrete–continuous monitoring.

Issue number: 7
Year: 2019
ISBN: 0236-1493
UDK: 624.191.6
DOI: 10.25018/0236-1493-2019-07-0-13-29
Authors: Mazein S. V., Voznesenskiy A. S., Pankratenko A. N.

About authors: S.V. Mazein, Dr. Sci. (Eng.), Professor, e-mail: maz-bubn@mail.ru, Russian University of Transport (RUT-MIIT), A.S. Voznesenskiy (1), Dr. Sci. (Eng.), Professor, e-mail: al48@mail.ru, A.N. Pankratenko (1), Dr. Sci. (Eng.), Professor, Head of Chair, e-mail: pankrat54@bk.ru, 1 National University of Science and Technology «MISiS», 119049, Moscow, Russia. Corresponding author: A.S. Voznesenskiy, e-mail: al48@mail.ru.

REFERENCES:

1.        Mazein S. V., Voznesenskiy A. S. Experience of shield tunneling with hydro dead weight. Metro i tonneli. 2019, no 1, pp. 14—17. [In Russ].

2.        Mazein S. V., Fedunets B. I., Voznesenskiy A. S. Monitoring of pressure and volume of soil in shield tunneling with bentonite dead weight. Metro i tonneli. 2015, no 3, pp. 18—21. [In Russ].

3.        Fritz P. Additives for Slurry Shields in Highly Permeable Ground. Rock Mechanics and Rock Engineering. 2007. No 40 (1). pp. 81—95.

4.        Cimiotti C., Bono R., Fioravanti P. Lake Mead — Intake Tunnel No. 3 Pre-Excavation Grouting Challenges Using a High Pressure Slurry TBM. In: Grouting 2017: Grouting, Drilling, and Verification. Reston, VA: American Society of Civil Engineers. 2017. pp. 325—337.

5.        Mooney M. A., Grasmick J., Kenneally B., Fang Y. The role of slurry TBM parameters on ground deformation: Field results and computational modelling. Tunneling and Undergraund Space Technology. 2016. No 57 (8). pp. 257—264.

6.        Mei Z., He T., Zhou S., Wang B., Wang C. Large-Diameter Slurry TBM Tunneling-Induced Settlements: The Case of the Yangtze River Tunnel of Nanjing New Line 10. In: 15th COTA International Conference of Transportation Professionals. Reston, VA: American Society of Civil Engineers. 2015. pp. 1599—1611. DOI:10.1061/9780784479292.147.

7.        Park H., Oh J-Y., Kim D., Chang S. Monitoring and Analysis of Ground Settlement Induced by Tunnelling with Slurry Pressure-Balanced Tunnel Boring Machine. Advances in Civil Engineering. Volume 2018, Article ID 5879402, pp. 1—10. DOI:10.1155/2018/5879402.

8.        Makarevich G. V. Shields with soil and hydro dead weights. Tunnel boring systems with different dead weights on face: Advantages and shortcomings. Metro i tonneli. 2004, no 1, pp. 22—25 [In Russ].

9.        Ates U., Bilgin N., Copur H. Estimating torque, thrust and other design parameters of different type TBMs with some criticism to TBMs used in Turkish tunneling projects. Tunnelbng and Underground Space Technology. 2014. Feb; 40. pp. 46—63.

10.        Chuan J., Marotta M., Nam O. 2018. Excavation Management System for Slurry TBM in Singapore. Paper proceedings. ITA — AITES World Tunnel Congress. 21—26 April 2018. Dubai International Convention & Exhibition Centre, UAE. pp. 3120—3133.

11.        STO NOSTROY 2.27.19-2011. Osvoenie podzemnogo prostranstva. Sooruzhenie tonneley tonneleprokhodcheskimi mekhanizirovannymi kompleksami s ispol'zovaniem vysokotochnoy obdelki [СТО НОСТРОЙ 2.27.19-2011. [Builders Standards STO NOSTROI 2.27.19-2011. Development of underground space. Tunneling with tunnel boring machines and high-accuracy lining], Moscow, 2012.

12.     Bezuijen A. The influence of grout and bentonite slurry on the process of TBM tunneling. Geomechanik und Tunnelbau. 2009, Jun; 2(3). pp. 294—303.

13.        Rengshausen R., Tauriainen R., Raedle A. TBM and spoil treatment selection process — case history Crossrail C310 Thames Tunnel. Geomechanik und Tunnelbau. 2014, Feb; 7(1). pp. 45—54.

14.        Klitzen J., Herdina J. Hydroshield drive with a diameter of 13 m in the Lower Inn Valley — Project design and experience from construction of contract H3-4. Hydroschildvortrieb mit 13 m Durchmesser im Unterinntal — Projektplanung und Erfahrungen im Baulos H3-4. Geomechanik und Tunnelbau. 2016, Oct.; 9(5). pp. 534—546.

15.        Zhang Z. X., Hu X. Y., Scott K. D. A discrete numerical approach for modeling face stability in slurry shield tunneling in soft soils. Computers and Geotechnics. 2011, Jan; 38(1). pp. 94—104.

16.        Wendl K., Scholz M., Thuro K. Charakterisierung der ingenieurgeologischen Vortriebsdokumentation von Hydroschild-vortrieben am Beispiel der Baulose H3-4 und H8 im Unterinntal. Geotechnik. 2012, Sep; 35(3). pp. 168—176.

17.        Cimiotti C., Bono R., Fioravanti P. Lake Mead — Intake Tunnel No. 3 Pre-Excavation Grouting Challenges Using a High Pressure Slurry TBM. In: Grouting 2017. Reston, VA: American Society of Civil Engineers; 2017. pp. 325—337.

18.    Zumsteg R., Puzrin A. M., Anagnostou G. Effects of slurry on stickiness of excavated clays and clogging of equipment in fluid supported excavations. Tunneling and Underground Space Technology. 2016, Sep.; 58. pp. 197—208.

19.    Duhme R., Rasanavaneethan R., Pakianathan L., Herud A. Theoretical basis of slurry shield excavation management system. Tunneling and Underground Space Technology. 2016, Aug.; 57. pp. 211—224.

20.    Mazein S. V., Voznesenskiy A. S. Monitoring of rotor pressure and soft soil pressure in shield tunneling. Geotekhnika. 2014, no 1, pp. 44—51. [In Russ].

21.    Rukovodstvo po proektirovaniyu i stroitel'stvu tonneley shchitovym metodom. Perevod s angl. V. E. Merkina, V. P. Samoylova [Shield tunneling design and implementation guidelines. English–Russian translation Merkina V. E., Samoylova V. P.], Moscow, Metro i tonneli, 2009, 448 p.

22.    Mekhanizirovannaya prokhodka tonneley v gorodskikh usloviyakh. Metodologiya proektirovaniya i upravleniya stroitel'stvom. Pod red. V. Gul'elmetti, P. Grasso, A. Makhtaba, Sh. Syu; «Geodata S.p.A.», Turin, Italiya [Machine-assisted tunneling in urban conditions. Design and construction control methodology. Gul V.'elmetti, Grasso P., Makhtaba A., Sh. Syu (Eds.); «Geodata S.p.A.», Turin, Italy], Saint-Petersburg, Izd-vo Politekhn. un-ta, 2013, 602 p.

Subscribe for our dispatch