EFFICIENCY OF OPEN CAST PEAT MINING WITH MECHANICAL FIELD DEWATERING

This study aims to analyze in-situ application of preliminary mechanical dewatering of excavated peat within strategy of efficient management of peat bog water resources. Natural peat bogs are water-encroached, and water quantity is considerable, which limits direct practical use of the deposits and complicates mining. Water in peat bogs has complex chemical composition according to Russian and foreign research. The qualitative composition of peat water during open cast mining is presented. The implemented analysis shows that it is expedient to add the open cast technology of peat mining with operation of mechanical dewatering of peat raw material. Modern surface mining machines have capacities to treat peat with liquid phase withdrawal. With continuous-action screw press, preliminary mechanical dewatering will reduce water content of excavated peat approximately by 45%. The rate of subsequent drying of peat pellets also grows, both afield and in plant conditions. Withdrawn water is returned to peat bog, and no treatment plant is required to be constructed. Furthermore, peat haulage cost drops y 40%. The process of mechanical peat dewatering needs improvement of machinery with regard to physical and mechanical properties of peat raw material.


For citation: Mikhailov A. V., Garmaev O. J., Fedorov A. S., Garifullin D. R. Efficiency of open cast peat mining with mechanical field dewatering. MIAB. Mining Inf. Anal. Bull. 2019;(7):30-41. [In Russ]. DOI: 10.25018/0236-1493-2019-07-0-30-41.

Keywords

Peat bog, peat water, open cast mining method, water balance, mechanical peat dewatering, screw press.

Issue number: 7
Year: 2019
ISBN: 0236-1493
UDK: 553.97:622.331
DOI: 10.25018/0236-1493-2019-07-0-30-41
Authors: Mikhailov A. V., Garmaev O. J., Fedorov A. S., Garifullin D. R.

About authors: A. V. Mikhailov1, Dr. Sci. (Eng.), Professor, O. J. Garmaev1, Graduate Student, A. S. Fedorov, Graduate Student, D. R. Garifullin1, Graduate Student, Saint Petersburg Mining University, 199106, Saint-Petersburg, Russia. Corresponding author: O.J. Garmaev, e-mail: garmaev.oyun@gmail.com.

REFERENCES:

1.        Gosudarstvennyy doklad «O sostoyanii i ob okhrane okruzhayushchey sredy Rossiyskoy Federatsii v 2017 godu» [State report «On the state and environmental protection of the Russian Federation in 2017»], Moscow, Minprirody Rossii; NPP «Kadastr», 2018, 888 p. [In Russ].

2.        Water resource management and the mining industry. National Water Agency, Brazilian Mining Association; Antônio Félix Domingues, Patrícia Helena Gambogi Boson, Suzana Allpaz, organizers. Brasilia: ANA: IBRAM, 2013. 334 p.

3.        Krawczykowska A., Marciniak-Kowalska J. Problems of water content in lignite’s — methods of its reduction. AGH Journal of Mining and Geoengineering, 2012, vol. 36, No. 4. pp. 57—65.

4.        Joosten H., Clarke D. Wise use of mires and peatlands — Background and principles including a framework for decision-making. International Mire Conservation Group. International Peat Society, 2002, 304 p.

5.        Kløve B. Characteristics of nitrogen and phosphorus loads in peat mining wastewater. Water Research, 2001, 35 (10), pp. 2353—2362.

6.        Baird A. J., Eades P. A., Surridge B. W. J. The hydraulic structure of a raised bog and its implications for ecohydrological modelling of bog development. Ecohydrology, 2008, 1, pp. 289—298.

7.        Tomson A. E., Naumova G. V. Torf i produkty ego pererabotki [Peat and products of its processing], Minsk, Belarusskaya navuka, 2009, 328 p.

8.        Mikhailov A., Kim A., Prodous O. Peatland restoration after open pit mining. Land Reclamation in Ecological Fragile Areas: Proceedings of the 2nd International Symposium on Land Reclamation and Ecological Restoration (LRER 2017), October 20—23, 2017, Beijing, PR China Edited by Zhenqi Hu. Taylor & Francis Group, CRC Press 2017. pp. 289—294.

9.        Afanas'ev E. A., Malkov L. M., Smirnov V. I. Tekhnologiya i kompleksnaya mekhanizatsiya razrabotki torfyanykh mestorozhdeniy [Technology and integrated mechanization of peat mining], Moscow, Nedra, 1987, 311 p.

10.    Instruktsiya po pasportizatsii torfyanoy zalezhi (rukovodyashchiy dokument RD153-12.4001-99) [Guidelines on peat deposit certification (Regulating Document RD 153-12.4-001-99)], Moscow, Ministerstvo topliva i energetiki RF, 1999, 7 p.

11.    Lishtvan I. I., Bazin E. T., Kosov V. I. Fizicheskie protsessy v torfyanykh zalezhakh [Physical processes in peat deposits], Minsk, Nauka i tekhnika, 1989, 287 p.

12.    Bourbonniere R. A. Review of water chemistry research in natural and disturbed peatlands. Can. Water Resour. J. 2009, 34, 393–414.

13.    Worrall F., Burt T. P. Changes in DOC treatability: indications of compositional changes in DOC trends. Journal of Hydrology, 2009, 366, pp. 1—8.

14.    Carmen Cillero, Ramo´n A. Dı´az-Varela, Marco Rubinos, Pablo Ramil-Rego. Assessment of anthropogenic pressures on South European Atlantic bogs (NW Spain) based on hydrochemical data. Hydrobiologia (2016) 774:137—154.

15.    Joensuu S., Ahti E., Vuollekoski M. Effects of ditch network maintenance on the chemistry of run-off water from peatland forests. Scandinavian J. For. Res. 17, 2002. pp. 238—247.

16.    Silvan N., Silvan K., Laine J. Excavation-drier method of energy-peat production reduces detrimental effects of this process on watercourses. Boreal environment research 17: 2010, pp. 347—356.

17.    Turner T. E., Billett M. F., Baird A. J., Chapman P. J., Dinsmore K. J., Holden J. Regional variation in the biogeochemical and physical characteristics of natural peatland pools. Sci. Total Environ. 2016, 545, 84—94.

18.    Silvan N., Silvan K., Väisänen S., Soukka R., Laine J. Excavation-drier method of energypeat extraction reduces long-term climatic impact. Boreal Env. Res. 17: 2012: 263—276.

19.    Goryachev V. I. Iskusstvennoe obezvozhivanie torfa: monografiya [Artificial dewatering of peat: monograph], Tver', TvGTU, 2012, 183 p.

20.    Bogatov B. A. Development of peat extraction technology with artificial dehydration. Torfyanaya promyshlennost'. 1983, no 1, pp. 6—9. [In Russ].

21.    Kollektiv avtorov. Edinye pravila bezopasnosti pri razrabotke mestorozhdeniy poleznykh iskopaemykh otkrytym sposobom (PB 03-498-02). Seriya 03. Vyp. 22 [Group of authors. Uniform safety rules at development of mineral deposits by open method (PB 03-498-02). Series 03. Issue 22], Moscow, ZAO NTTS PB, 2009, 148 p. [In Russ].

22.    Shevtsova S. P., Flanagan A. G., Kosolapov A. B. The use of natural peat water to produce biologically active product «Aquaholic». Uspekhi sovremennogo estestvoznaniya. 2009, no 12, pp. 33—34. [In Russ].

23.    Garmaev O. Zh., Severikova D. D., Mikhaylov A. V. Methods of intensification of field drying of peat raw materials and methods of its mechanization. Internet-zhurnal «Naukovedenie». 2017. Vol. 9, no 3. http://naukovedenie.ru/PDF/73TVN317.pdf. [In Russ].

24. Tsaros C. L. Peat dewatering; an overview. Proc. Symp. «Peat as an Energy Alternative II» Arlington, Virginia, 1—3 Dec. 1981. pp. 199—216.

25.    Moreno J. J., Kendall S., Ortiz A. Dewatering options for management of fine gold tailings in Western Australian Goldfields. In RJ Jewell & AB Fourie (eds), Proceedings of the 21st International Seminar on Paste and Thickened Tailings, Australian Centre for Geomechanics, Perth, 2018, pp. 413—424.

26.    Absolon V., Nieuwkerk D. Innovative use of screw press filtration in tailings dewatering plant design, in Proceedings 12th AusIMM Mill Operators’ Conference, 2014, pp. 449—456.

27.    Torf nizkoy stepeni razlozheniya. Tekhnicheskie usloviya. GOST 33162-2014 [Peat low degree of decomposition. Technical conditions. State Standart 33162-2014], Moscow, Standartinform, 2016, 10 p.

28.    Afanas'ev A. E., Malkov L. M., Smirnov V. I. Tekhnologiya i kompleksnaya mekhanizatsiya razrabotki torfyanykh mestorozhdeniy. Uchebnoe posobie dlya vuzov [Technology and complex mechanization of peat deposits development. Higher educational aid], Moscow, Nedra, 1987, 311 p.

Subscribe for our dispatch