The article describes modification of mathematical model and building of criterion equation for hydro vortex inertia orthokinetic dust suppression in coal mines as the currently available technology and equipment of dust control are insufficiently effective. Based on the similarity theory and using the Fourier transform, Pi theorem and Venikov’s statements on similarity of complex systems, the problem on building of an equation for hydro vortex inertia orthokinetic coagulation in the criterion form has been formulated and solved. The obtained criterion equation is used to determine basic indicators an similarity criteria which define identity between experimental research and actual dust suppression processes at sufficient accuracy. The threshold values of the Stokes criterion for total absorption of dust particles by rotating fluid drops at the expense of the increase in the angle of contact are proved to be much lower. The experimental research confirms fidelity of the criterion equation of hydro vortex inertia orthokinetic coagulation in providing identity between model testing and actual physical processes of dust suppression. The theoretical studies and experimental tests prove high efficiency of hydro vortex dust suppression enabling decrease in water consumption by 25%, reduction in minimum size of absorbed dust particle to 5 ∙ 10–7 and improvement of dust control efficiency to 99%.

For citation: Makarov V. N., Ugolnikov A. V., Materov A. Yu., Makarov N. V., Tauger V. M. Modified criterion equation of hydro vortex dust suppression in coal mines. MIAB. Mining Inf. Anal. Bull. 2019;(7):53-61. [In Russ]. DOI: 10.25018/0236-1493-2019-07-0-53-61.


Сriterion equation, coal mine, wetting angle, of criterion equation, hydrovortex nozzle.

Issue number: 7
Year: 2019
ISBN: 0236-1493
UDK: 622.02: 624.1
DOI: 10.25018/0236-1493-2019-07-0-53-61
Authors: Makarov V. N., Ugolnikov A. V., Materov A. Yu., etc.

About authors: V. N. Makarov (1), Dr. Sci. (Eng.), Professor, A. V. Ugol'nikov (1), Cand. Sci. (Eng.), Head of Chair, A. Yu. Materov, Head of Department, e-mail:, Scientific-production complex «OylGazMash», 142103, Podolsk, Russia, 1. Makarov (1), Cand. Sci. (Eng.), Head of Chair, e-mail:, V. M. Tauger (1), Cand. Sci. (Eng.), Head of Chair, 1) Ural State Mining University, 620144, Ekaterinburg, Russia. Corresponding author: N.V. Makarov, e-mail:


1. Skopintseva O. V. Scientific justification of integrated gas and dust hazard reduction in coal mines. Gornyy informatsionno-analiticheskiy byulleten’. 2011, no S7, pp. 315—325. [In Russ].

2.Kovshov S., Erzin A., Kovshov V. Dust binding with ecologically safe compounds on exposed dusting surfaces in coal mines. Mezhdunarodnyy zhurnal ekologii i razvitiya. 2015. 30 (1), pp. 11—23. [In Russ].

3. Gendler S. G., Kovshov S. V. Investigation into adhesive properties of sodium carboxymethyl cellulose aiming at development of dust suppression layer. Research Journal of Pharmaceutical, Biological and Chemical Sciences. 2016 7(1), pp. 2084—2090.

4. Makarov V. N., Davydov S. Ya. Theoretical basis for increasing ventilation efficiency in technological processes at industrial enterprises. Refractories and Industrial Ceramics. 2015. Vol. 56, iss. 1, pp. 103—106. DOI: 10.1007/s11148-015-9791-7.

5. Korshunov G. I., Kovshov S. V., Safina A. M. Dust control methods in open-pit mining. Current state of physical & chemical research Ecology, Environment and Conservation. 2017. Vol. 23, No 2, pp. 883—889.

6. Makarov V. N., Makarov N. V., Plotnikov N. S., Potapov V. V. Mathematical modeling of vortex hydrodedusting at mining and processing plants. Gornyy informatsionno-analiticheskiy byulleten’. 2018, no 4, pp. 210—217. [In Russ]. DOI: 10.25018/0236-1493-2018-4-0-210-217.

7. Makarov V. N., Gorshkova N. A., CHurkin V. A. Patent RU 2575372, 20.02.2016.

8. Makarov V. N., Kosarev N. P., Makarov N. V., Ugol'nikov A. V., Lifanov A. V. Efficient localization of coal dust explosions using hydro vortex coagulation. Vestnik permskogo natsional'nogo issledovatel'skogo politekhnicheskogo universiteta. Geologiya. Neftegazovoe i gornoe delo. 2018, no 2, vol. 18, pp. 178—189. [In Russ].

9. Frolov A. V., Telegin V. A., Sechkerev Yu. A. Principles of hydrodedusting. Bezopasnost' zhiznedeyatel'nosti. 2007, no 10, pp. 1—24. [In Russ].

10. Bautin S. P. Mathematical simulation of the vertical part of an upward swirling flow. High temperature. 2014. Vol. 52, No 2, pp. 259—263. DOI: 10.1134/S0018151X14020035.

11. Cecala A. B., Dust A. D. Control handbook for industrials minerals mining and processing. Office of Mine safety and Health Research, 2012. 159 c.

12. Makarov V. N., Potapov V. Ya., Davydov S. Ya., Makarov N. V. A method of additive aerodynamic calculation of the friction gear classification block. Refractions and Industrial Ceramics. 2017. Vol. 38, No 3, pp. 288—292. DOI: 10.1007/s11148-017-0098-8.

13. Program evaluation and information resources, standardized information system. Arlington: U.S. Department of Labor, Mine Safety and Health Administration, 2009.

14. Loytsyanskiy L. G. Mekhanika zhidkosti i gaza. Uchebnik dlya vuzov. 7-e izd. [Mechanics of fluid and gas. Textbook for high schools. 7th edition], Moscow, Drofa, 2003, 840 p.

15. Venikov V. A. Teoriya podobiya i modelirovaniya primenitel'no k zadacham elektroenergetiki. Uchebnik dlya vuzov. 4-e izd. [Theory of modeling and similarity in problems of electrical power engineering. Textbook for high schools. 4th edition], Moscow, Librokom, 2014, 439 p.

Subscribe for our dispatch