NONLINEAR MECHANOELECTRICAL TRANSFORMATIONS IN POROUS MEDIA: THEORETICAL BACKGROUND

Mechanoelectrical transformations take place in rocks at different scale of saturation with mechanical energy. Nonlinearity of such transformations at high energy saturation (failure) is a subject of extensive investigation. At low energy saturation (elastic waves), these transformations reduce to linear seismoelectrical phenomena in porous media saturated with fluids. However, features of real geophysical environment and the experimental data are reflective of potential nonlinearity. Application of the Onsager theory to explanation of seismoelectrical phenomena usually neglects influences exerted by temperature gradients, concentration of dissolved substances and inverse effect of secondary electric field on elastic field. The latter can bring apparent violation of linear laws connecting electric (Ohm’s law) and elastic (Hooke’s law) values. Presence of discontinuities at all scales in a medium means, according to Academician Sadovsky, existence of fast secondary electromagnetic waves. Furthermore, in case that small size pores comparable with the thickness of diffusion part of double electric layer exist, it is possible that the electric field component appear along the normal to its surface. The combination harmonics and parametric resonance as nonlinear phenomena are explain using a model of a pore partly filled with fluid. In this case, it is possible to modulate electric parameters by elastic disturbance. Conditions of observation of the related nonlinearity are determined. Three criteria of nonlinearity are formulated in terms of experimentally found parameters: amplitude nonlinearity, additive nonlinearity and Ohm’s law violation. The governing parameters, types of generating signals and respective nonlinearity events are defined.


For citation: Kaznacheev P. A., Kamshilin A. N. Nonlinear mechanoelectrical transformations in porous media: theoretical background. MIAB. Mining Inf. Anal. Bull. 2019;(7):83-103. [In Russ]. DOI: 10.25018/0236-1493-2019-07-0-83-103.


Acknowledgements: This study was supported by the Russian Foundation for Basic Research, Project No. 18-35-00698, and by the state assignment of Institute of Physics of the Earth, Russian Academy of Sciences, theme No. 0144-2014-0096.

Keywords

Rocks, mechanoelectrical transformations, seismoelectrical effect, electromagnetic events in material media, porous medium nonlinearity.

Issue number: 7
Year: 2019
ISBN: 0236-1493
UDK: 550.371.5 + 537.867 + 534-18 + 53.09
DOI: 10.25018/0236-1493-2019-07-0-83-103
Authors: Kaznacheev P. A., Kamshilin A. N.

About authors: P.A. Kaznacheev, Cand. Sci. (Eng.), Senior Researcher, e-mail: p_a_k@mail.ru, Kamshilin, Cand. Sci. (Phys. Mathem.), Leading Researcher, Schmidt Institute of Physics of Earth of Russian Academy of Sciences, 123242, Moscow, Russia, Corresponding author: P.A. Kaznacheev, e-mail: p_a_k@mail.ru.

REFERENCES:

1. Ivanov A. G. Seismoelectric effect of the 1st kind in near-electrode regions. Doklady Akademii nauk SSSR. 1949. Vol. 68, pp. 53—56. [In Russ].

2. Ivanov A. G. Seismoelectric effect of the 2nd kind. Izvestiya Akademii nauk SSSR. Seriya geograficheskaya i geofizicheskaya. 1940, no 5, pp. 699—727. [In Russ].

3. Frenkel Ya. I. To the theory of seismic and seismoelectric phenomena in moist soil. Izvestiya Akademii nauk SSSR. Seriya geograficheskaya i geofizicheskaya. 1944. Vol. 8, no 4, pp. 133—150. [In Russ].

4. Terent'ev V. G. Studies of the second kind of seismoelectrical effect in laboratory. ZapiskiGornogo instituta. 1992. Vol. 130, pp. 13—17. [In Russ].

5. Pride S. R. Governing equations for the coupled electromagnetics and acoustics of porous media. Phys. Review. Bull., 1994, Vol. 50, pp. 15678—15696.

6. Svetov B. S. and Gubatenko V. P. Electromagnetic field of electromechanical origin in watersaturated porous rocks. 1. formulation of the problem. Izvestiya. Physics of the Solid Earth, 1999, vol. 35, no 10, pp. 854—860.

7. Biot M. A. Theory of propagation of elastic waves in a fluid saturated porous solids. I. Low-Frequency Range. J. Acoustic. Soc. Amer., 1956a, Vol. 28, pp. 168—178.

8. Biot M. A. Theory of propagation of elastic waves in a fluid-saturated porous solids. II. Higher Frequency Range. J. Acoustic. Soc. Amer., 1956b, Vol. 28, pp. 179—191.

9. Gokhberg M. B., Morgunov V. A., Pokhotelov O. A. Seysmoelektromagnitnye yavleniya [Seismoelectromagnetic phenomena], Moscow, Nauka, 1988, 174 p.

10. Sobolev G. A., Demin V. M. Mekhanoelektricheskie yavleniya v Zemle [Mechanoelectric phenomena in the Earth], Moscow, Nauka, 1980, 215 p.

11. Oparin V. N., Yakovitskaya G. E., Vostretsov A. G., Seryakov V. M. and Krivetsky A. V. Mechanical-electromagnetic transformations in rocks on failure. Journal of Mining Science, 2013, vol. 49, no 3, pp. 343—356. DOI: 10.1134/S1062739149030015.

12. Novatskiy V. Elektromagnitnye effekty v tverdykh telakh [Electromagnetic effects in solids], Moscow, Mir, 1986, 159 p.

13. Vorob'ev A. A. Fizicheskie usloviya zaleganiya i svoystva glubinnogo veshchestva [Physical conditions of occurrence and properties of deep matter], Tomsk, Izd. Tomskogo universiteta, 1975, 298 p.

14. Zdorov A. G., Morgunov V. A. General regularities of electromagnetic radiation at the Kavminvod test area. Geofizicheskie issledovaniya. 2005. Issue 4, pp. 50—60. [In Russ].

15. Shtalin S. G., Gordeev V. F., Malyshkov S. Yu., Polivach V. I., Malyshkov Yu. P. EM field recording unit for monitoring the geodynamic processes and geophysical prospecting. Datchiki i sistemy. 2012, no 4, pp. 32—37. [In Russ].

16. Gershenzon N. I. and Gokhberg M. B. On the Origin of ULF Magnetic Disturbances Prior to the Loma Prieta Earthquake. Izvestiya, Physics of the Solid Earth, 1994, vol. 2, pp. 19—24.

17. Alekseev D. A. and Gokhberg M. B. On the Possibility of Estimation of the Earth Crust’s Properties from the Observations of Electric Field of Electrokinetic Origin, Generated by Tidal Deformation within the Fault Zone. Izvestiya: Physics of the Solid Earth, 2018, vol. 54, no 3, pp. 487—503. DOI: 10.1134/S1069351318030023.

18. Parrot M., Achache J., Berthelier J. J., Blanc E., Deschamps A., Lefeuvre F., Menvielle M., Plantet J. L., Tarits P. and Villain J. P. High-frequency seismo-electromagnetic effects. Physics of the Earth and Planetary Interiors, 1993, Vol. 77, Iss. 1—2, pp. 65—83.

19. Novatskiy V. Dinamicheskie zadachi termouprugosti [Dynamic problems of thermoelasticity], Moscow, Mir, 1970, 256 p.

20. Fredrich J. T., Wong T.-F. Micromechanics of thermally induced cracking in three crustal rocks. J. of Geophys. Research, 1986, Vol. 91, no B12, pp. 12743—12764.

21. Gyulai Z., Hartly D. Elektrische Leitfähigkeit verformter Steinsalzkristalle. Zeitschrift für Physik, 1928, Vol. 51, no 5/6, pp. 378—387.

22. Martin R. J., Wyss M. Magnetism of rock and volumetric strain in failure tests. PAGEOPH, 1975, Vol. 113, no 1/2, pp. 51—61.

23. Volarovich M. P., Parkhomenko E. I. Piezoelectric effect in rocks. Doklady Akademii nauk SSSR. 1954. Vol. 99, no 2, pp. 239—242. [In Russ].

24. Rzhevskiy V. V., Yamshchikov B. C., Shkuratnik V. L. Thermoemision effects of rock memory. Doklady Akademii Nauk SSSR, 1985, vol. 283, no 4, pp. 843—845.

25. Manstein A. K., Nesterova G. V., Filatov V. V., Saeva O. P. Assessing magnitude of seismoelectric effect of the first kind. Tekhnologii seysmorazvedki. 2013, no 4, pp. 81—88. [In Russ].

26. Svetov B. S. Osnovy geoelektriki [Fundamentals of geoelectrics], Moscow, LKI, 2008, 656 p.

27. Bobrovnikov L. Z., Bobylov Y. A., Golovin S. V., Dobrynin S. I. Innovative geophysical technologies in oil and gas geological exploration. Nauchnyy zhurnal Rossiyskogo gazovogo obshchestva. 2015, no 2—3, pp. 20—34. [In Russ].

28. Smeulders D., Grobbe N., Heller K., Schakel M. Seismoelectric Conversion for the Detection of Porous Medium Interfaces between Wetting and Nonwetting Fluids. Vadose Zone Journal, 2014, Vol. 13. DOI: 10.2136/vzj2013.06.0106.

29. Safonov A. S. Elektrodinamicheskaya seysmorazvedka ili seysmorazvedka s registratsiey elektromagnitnykh sostavlyayushchikh volnovogo polya [Electrodynamic seismic or seismic with registration of electromagnetic components of the wave field], Moscow, VNIGNI, 2017, 152 p.

30. Potapov O. A., Lizun S. A., Kondrat V. F., Lyashchuk D. N., Grozdenskiy V. A., Seyfullin R. S., Ermakov B. D., Portnyagin N. E. Osnovy seysmoelektrorazvedki [Fundamentals of seismic exploration], Moscow, Nedra, 1995, 268 p.

31. Antsiferov M. S. The electro-seismic effect. Doklady Akademii nauk SSSR. 1962, no 6, pp. 1295—1297. [In Russ].

32. Volkova E. N., Kamshilin A. N. Excitation of geoelectric oscillations and alteration of ground conductivity by a vibration generator. Doklady of the Academy of Sciences of the USSR, Earth Science Sections, 1988, Vol. 302, no 5, pp. 54—56.

33. Petkevich G. I., Lyashchuk D. N., Lizun S. A., Kondrat V. F. Geoelektricheskie issledovaniya polei, stimulirovannykh vibrovozdeistviem v neodnorodnykh sredakh [Geoelectrical studies of fields stimulated by vibration in inhomogeneous media]. Netraditsionnye metody geofizicheskikh issledovanii

neodnorodnostei v zemnoi kore, Sbornik statey, Moscow, 1989, pp. 72—73. [In Russ].

34. Parkhomenko E. I. The main regularities of the seismoelectric effect of sedimentary rocks and ways of its using in geophysics. Physical properties of rocks and minerals at high pressures and temperatures, Sbornik statey, Moscow, Nauka, 1978, pp. 200—207. [In Russ].

35. Chernyak G. Ya. Elektromagnitnye metody v gidrogeologii i inzhenernoy geologii [Electromagnetic methods in hydrogeology and engineering geology], Moscow, Nedra, 1987, 165 p.

36. Ageeva O. A., Svetov B. S., Sherman G. Kh., Shipulin S. V. Seismoelectric effect of second kind in rocks from data of laboratory studies. Russian Geology and Geophysics, 1999, vol. 40, no 8, pp. 1251—1257.

37. Kamshilin A. N., Volkova E. N., Kuzichkin O. R., Sokolnikov M. A. Self-oscillations in rocks, results of laboratory experiments. Annals of geophysics, Vol. 47, no 1 (feb. 2004), pp. 93—100.

38. Ageeva O. A. The use of seismoelectric transformations in reservoir rocks for pore space saturation. Geofizika. 2008, no 1, pp. 1621. [In Russ].

39. Volkova E. N., Kamshilin A. N. Mechanoelectrical transformers. Gornaya geofizika. Mezhdunarodnaya konferentsiya 22—25 June 1998, Saint-Petersburg, Россия. Collection of scientific papers. Saint-Petersburg, VNIMI, 1998, pp. 486—488. [In Russ].

40. Bordes C., Sénéchal P., Barrière J., Brito D., Normandin E., Jougnot D. Impact of water saturation on seismoelectric transfer functions: a laboratory study of coseismic phenomenon. Geophysical Journal International, 2015, Vol. 200, Iss. 3, pp. 1317—1335. DOI: 10.1093/gji/ggu464.

41. Gul'yel'mi A. V., Kamishilin A. N., Volkova E. N. and Chirkov E. B. Seismic vibrator excitation of geoelectric signals at combination frequencies. Transactions (doklady) of the USSR Academy of Sciences. Earth science sections, 1989, vol. 309, no 6, pp. 19—21.

42. Kamshilin A. N. Parametricheskie seysmoelektricheskie yavleniya [Parametrical seismoelectric phenomena]. Fiziko-khimicheskie i petrofizicheskie issledovaniya v naukakh o Zemle: 19-ya mezhdunarodnaya konferentsiya. Materialy konferentsii], Moscow, IGEM RAN. 2018, pp. 153—156. [In Russ].

43. Chechurin S. L. Parametricheskie kolebaniya i ustoychivost' periodicheskogo dvizheniya [Parametric oscillations and stability of periodic motion], Leningrad, Izd. LGU, 1983, 219 p.

44. Chebotareva I. Ya., Kamshilin A. N. Research of mechanoelectric transformations in rock with a small degree of fluid saturation, Radiopromyshlennost’. 2018, no 1, pp. 18—26. DOI:10.21778/2413-9599-2018-1-18-26. [In Russ].

45. Shermergor T. D. Teoriya uprugosti mikroneodnorodnykh sred [Theory of elasticity of micro-inhomogeneous media], Moscow, Nauka, 1977. 400 p.

46. Sadovskiy M. A. Izbrannye trudy: Geofizika i fizika vzryva [Selected works: Geophysics and physics of explosion], Moscow, Nauka, 2004, 440 p.

47. Ivanov V. I. The probabilistic mechanism of formation of block structures. Doklady Physics, 2012, vol. 57, no 3, pp. 125—130. DOI: 10.1134/S1028335812030044.

48. Svetov B. S. Self-consistent problems of geophysics. A review. Izvestiya. Physics of the Solid Earth, 2015, vol. 51, no 6, pp. 910—914. DOI: 10.1134/S1069351315060117.

49. Kaznachev P. A., Kamshilin A. N., Popov V. V., Measuring local current density in the Earth crust. Vestnik Moskovskogo energeticheskogo instituta. 2011, no 5, pp. 57—63.

50. Burdine N. T., Gournay L. S., Reichertz P. P. Pore Size Distribution of Petroleum Reservoir Rocks. Journal of Petroleum Technology, 1950, no 2 (07), pp. 195—204. DOI: 10.2118/950195-g.

51. Nimmo J. R. Porosity and Pore Size Distribution. In: Encycl. Soils Environ. Elsevier, 2005. Pp. 295—303. DOI: 10.1016/B0-12-348530-4/00404-5.

52. Zechen Y., Canshou Ch., Pengxian F., Mingyang W., Xiang F. Pore Structure Characterization of Ten Typical Rocks in China. The Electronic Journal of Geotechnical Engineering, 2015, Vol. 20, bund. 2, pp. 479—494.

53. Kröger B., Yaramanci U., Kemna A. Numerical analysis of seismoelectric wave propagation in spatially confined geological units. Geophysical Prospecting, 2014, Vol. 62, DOI:10.1111/1365-2478.12020.

54. Grobbe N., Neut J., Slob E., Wapenaar K., Almagro C. V., Drijkoningen G. Unified multidepth-level field decomposition. Geophysical Prospecting, 2015, Vol. 64, DOI: 10.1111/1365-2478.12290.

Subscribe for our dispatch