The article gives details of the in-situ uranium leach technology used in Kazakhstan mines, factors reducing permeability of productive strata and the efficient method for recovery of initial porosity. The processes of in-situ uranium leaching with sulfuric acid as a dissolver, as well as causes and conditions of drop in well productivity during operation are discussed. The effect of reduction in permeability of enclosing rocks in difficult geological conditions on the processes of in-situ uranium recovery and its degradation is considered. Sediments sampled from three deposits located in the Syr-Darya uranium province are prepared and their mineralogical compositions are studied at lab scale. Found by the X-ray phase analysis, features and quantitative–qualitative parameters of sediments from each uranium deposit are discussed, and the causes of sedimentation during in-situ uranium leaching are determined. The modern efficient methods of well productivity recovery using chemical agents in case of prevailing chemical type of sediments, based on dissolution of analyzed samples are considered. The optimal chemical treatment of wells to improve permeability of productive strata is recommended.

For citation: Rakishev В. R., Mataev M. M., Kenzhetaev Z. S. Analysis of mineralogical composition of sediments in in-situ leach mining of uranium. MIAB. Mining Inf. Anal. Bull. 2019;(7):123-131. [In Russ]. DOI: 10.25018/0236-1493-2019-07-0-123-131.


In-situ uranium recovery, sedimentation, X-ray phase analysis, chemical treatment, repair-and-renewal operations.

Issue number: 7
Year: 2019
ISBN: 0236-1493
UDK: 669.227/228
DOI: 10.25018/0236-1493-2019-07-0-123-131
Authors: Rakishev В. R., Mataev M. M., Kenzhetaev Z. S.

About authors: B.R. Rakishev, Academician of National Academy of Sciences of Kazakhstan, Dr. Sci. (Eng.), Professor, Head of Chair, e-mail:, M.M. Mataev, Dr. Sci. (Chem.), Professor, Senior Researcher, Z.S. Kenzhetaev, Doctoral Candidate, K.I. Satpayev Kazakh National Research Technical University, 050013, Almaty, Kazakhstan. Corresponding author: B.R. Rakishev, e-mail:


1. Molchanov A. A., Demekhov Yг. V. Stimulation of uranium recovery from hydrogenous deposits by in-situ leaching in Kazakhstan (in terms of the East Mynkuduk deposit). Aktual'nye problemy uranovoy promyshlennosti. VII international conference: collection of scientific works. Almaty, Kazatomprom, 2014, pp. 92—98. [In Russ].

2. Khawassek Y. M., Taha M. H., Eliwa A. A. Kinetics of Leaching Process Using Sulfuric Acid for Sella Uranium Ore Material, South Eastern Desert. Egypt International Journal of Nuclear Energy Science and Engineering. 2016. Vol. 6. Pp. 62—73.

3. Baymurzaev Kh. R., Markelov S. V. Effect of chemical colmatation in fractured–porous rock mass on block-wise in-situ leaching performance. Gornyy informatsionno-analiticheskiy byulleten’. 2011, no 6, pp. 211—215. [In Russ].

4. Baymurzaev Kh. R., Malukhin N. G. Justification of rational application range for in-situ leaching of argillaceous uranium ore. Gornyy informatsionno-analiticheskiy byulleten’. 2011, no 10, pp. 223—225. [In Russ].

5. Rogov Е. I., Yazikov V. G., Rogov A. Е. Hydrodynamic model on in-situ uranium recovery. Gornyy informatsionno-analiticheskiy byulleten’. 2000, no 5, pp. 40—42. [In Russ].

6. Fyodorov G. V. Uranium production and the environment in Kazakhstan. International Atomic Energy Agency. 2000. Рp. 191—198.

7. Joint A. Uranium Resources, Production and Demand International: Nuclear Energy Agency and the International Atomic Energy Agency. Boulogne-Billancourt France. Organisation for economic cooperation and development, 2018. 462 p.

8. Alikulov Sh. Sh., Sobirov Zh., Khaydarova M. E. Study and introduction of methods of pregnant solution flow restriction and in-situ leach process intensification. Izvestiya vysshikh uchebnykh zavedeniy. Gornyy zhurnal. 2018, no 3, pp. 100—106. [In Russ].

9. Satybaldiev B. S., Uralbekov B. M., Burkitbaev M. M. Evaluation of filtration leaching efficiency in uranium production. Vestnik Kazakhskogo natsional'nogo universiteta imeni Al'-Farabi. 2015, no 3, pp. 23—27. [In Russ].

10. Yashin S. A. In-situ uranium leaching in Kazakhstan mines. Gornyy zhurnal. 2008, no 3, pp. 45—49.

11. Mataev M. M., Kenzhetaev Zh. S. New approaches to well reactivation in in-situ uranium recovery. Innovatsii v kompleksnoy pererabotki mineral'nogo syr'ya: sbornik nauchnykh rabot mezhdunarodny nauchno-prakticheskoy konferentsii Abishevskie chteniya-2016. Almaty, 2016, pp. 138—142. [In Russ].

12. Filipov A. P., Nesterov Yu. V. Redoks-protsessy i intensifikatsiya metallov [Redox-processes and intensification of metals], Moscow, Ruda i metally. 2009, 543 p.

13. Baymurzaev Kh. R., Markelov S. V. Effect of chemical colmatation in fractured–porous rock mass on block-wise in-situ leaching performance. Gornyy Vestnik Uzbekistana. 2011, no 1, pp. 45—49. [In Russ].

14. Mataev M. M., Rakishev B. R., Kenzhetaev G. S. The impact of ammonium bifluoride complex on colmataging formations during the process ofin situ uranium leaching. International journal of advanced research. 2017, no 5. Рp. 147—154.

15. Mataev M. M., Kenzhetaev Zh. S. Selection of effective repair-and-renewal operation methods in in-situ uranium leaching. Uspekhi sovremennogo estestvoznaniya. 2015, no 6, pp. 1001—1005. [In Russ].

Subscribe for our dispatch