It is discussed whether it is expedient and practically feasible to transit from conventional manual measurement of mud quality, in particular, density and content of solids in mud to surface, to automated continuous monitoring. For the procedure continuity, manual measurement is persevered while automation includes some additional elements such as turn table, timing relay, converter of measured parameter to electric signal, analog-to-digital converter and display board. The circuit diagrams are constructed for automatic meters of mud density, conditional viscosity, static shear stress, filtration and content of solids in mud to surface. The patent research discovers no other devices for automatic measurement of drill mud parameters. All listed facilities are patented in the Republic of Kazakhstan. The drill mud parameters, for the first turn, density and content of solids, take critical part in prevention of accidents. These parameters are amenable to unprompted changes in drilling under accident threat. Transition from sporadic manual measurements to the automated continuous monitoring (long ago implemented for all other operating conditions of drilling) can cut down cost of emergency response and elimination of drilling problems.

For citation: Biletskiy M. T., Ratov B. T., Delikesheva D. Automatic mud density measurement device. MIAB. Mining Inf. Anal. Bull. 2019;(7):140-148. [In Russ]. DOI: 10.25018/0236-1493-201907-0-140-148.


Drilling mud parameters, hole drilling, accidents, measurement automation, digitalization, density meter, content of solids, turn table, electric motor, bearing, funnel, calibrated spring.

Issue number: 7
Year: 2019
ISBN: 0236-1493
UDK: 622.14
DOI: 10.25018/0236-1493-2019-07-0-140-148
Authors: Biletskiy M. T., Ratov B. T., Delikesheva D.

About authors: M.T. Biletskiy (1), Cand. Sci. (Eng.), Assistant Professor, B.T. Ratov, Dr. Sci. (Eng.), Professor, e-mail:, Caspian Public University (Caspian University), Almaty, Kazakhstan, D. Delikesheva (1), Doctoral Candidate, 1) K.I. Satpayev Kazakh National Research Technical University, 050013, Almaty, Kazakhstan. Corresponding author: B.T. Ratov, e-mail:


1. Georg R.Gray, H.C.H. Darly. Composition and properties of oil well drilling fluids. Gulf publishing company. Huston, London, Paris, Tokio, Moscow, 1985, pp. 53—54, 97—100.

2. Bilezkiy M.T and others. An appliance for drilling mud density measurement. Kazakhstan Republic patent 25681, 16.06.2014.

3. Pustovoitenko I. P., Selivashchuk A. P. The hand book of master on complex drilling operations. Moscow, Nedra, 1983.

4. Bilezkiy M.T., etc. An appliance for automatic integrated drilling mud density and cuttings content measurement. Kazakhstan Republic patent 31786, 30.12.2016.

5. Spravochnik burovogo mastera. T. 1 [Drill operator’s manual. Vol. 1], Moscow, Infra Inzheneriya, 2006, pp. 358—418.

6. Spelt A., etc. Real-time mud monitoring improves drilling efficiency. The 13th Offshore Mediterranean Conference. 13-ya Offshornaya sredizemnomorskaya konferentsiya. Ravenna, March 2017.

7. Dalem A. Avtomaticheskoe regulirovanie parametrov burovogo rastvora [Automatic adjustment of drilling mud parameters], Thesis. Stavanger University, 2013.

8. Mullins M. R. Avtomaticheskoe ustroystvo dlya izmereniya svoystv rastvora v buryashchikhsya shakhtakh [Automation device for measurement of mud properties in drilling]. Thesis. University of South Florida, 2016.

9. Saasen A., etc. Automatic measurement of properties of drill mud and solids. SPE Burenie i zakanchivanie skvazhin. December 2009.

10. Karlsen L., etc. Use of instrumented down gate for drill mud dynamics monitoring to improve performance of automated operations in drilling. Raboty 12-go seminara po avtomaticheskomu upravleniyu offshornoy dobychi nefti i gaza. Trondheim, June 2012. [In Russ].

11. Isakovich R. Ya., etc. Kontrol' i avtomatizatsiya dobychi nefti i gaza [Automation and control in oil and gas production], Moscow, Nedra, 1985, pp. 269—270.

12. Sudakov А. К., Khomenko О. Ye., Isakova M. L., Sudakova D. A. Concept of numerical experiment of isolation of absorptive horizons by the rmoplastic materials. Scientific bulletin of National Mining University, 2016, no 5 (155), рр. 12—16.

13. Otebaev M., Kasenov A. K., Ratov B. T. Expediency of exploration drilling by rotary-percussion technique. Gornyy informatsionno-analiticheskiy byulleten’. 2009, no 4, pp. 166—171. [In Russ].

14. Sabirov B. F., Onishchin V. P., Potashinskiy I. M., Ratov B. T. Drilling tool for spudding-in of oil and gas wells in difficult ground conditions. Gornyy informatsionno-analiticheskiy byulleten’. 2016, no 4, pp. 76—83. [In Russ].

15. Rakishev B. R., Shashenko A. N., Kovrov A. S. Trends of therock failure conceptions development. News of the national academy of sciences of the republic of Kazakhstan. Series of geology and technical sciences. 2018, Vol. 5, No. 431, РР. 161—169.

16. Wills B. A., Finch J. Wills. Mineral Processing Technology. An introduction to the practical aspects of ore treatment and mineral recovery. 2015. Edition 8. p. 512.

17. Krylov I. O., Valavin V. S. Effects of ultrasonic treatment of old tailings at the Kamysh-Burun Iron Ore Plant. Ekologiya i promyshlennost Rossii. 2018. Vol. 22. No. 2. pp. 13—19.

18. Rovin S. L., Rovin L. E. Processing of iron-bearing mining waste. Litie i metally. 2015. No 4(81). pp. 67—70.

19. Povolotsky A. D., Povolotsky V. D., Potapov K. O., Roshchin V. E., Shestakov A. L., Rozovsky A. L. Patent RU 2 539 884 s1. Method for processing iron-bearing waste. 21.07.2015.

20. Bortnikov A. V., Samukov A. D., Spiridonov P. A., Shuloyakov A. D. Batch preparation technology for mineral cotton production based on the use of mineral processing waste. Obogashchenie Rud. 2015. No. 3. pp. 45–49. DOI: 10.17580/or.2015.03.09.

21. Yushina T. I., Krylov I. O., Valavin V. S., Sysa P. A. Producibility of iron-bearing materials from industrial waste of Kamysh-Burin Iron Ore Plant using Romelt process. Gornyi Zhurnal. 2017. No. 6. pp. 53—57. DOI: 10.17580/gzh.2017.06.10.

Subscribe for our dispatch