COMPLETE CYCLICAL-ANDCONTINUOUS TECHNOLOGY EQUIPMENT FOR INTERMODAL VEHICLE–CONVEYOR–RAIL TRANSPORT

This study evolves the theory and practice of completing equipment involved in the cyclical-and-continuous method (CCM) of mining with vehicle–conveyor–rail transport. Earlier R&D projects mostly deal with extended fields of open pit mines. This study focuses on rounded mine fields. One of the problems of CCM efficiency yet remains the project capacity of expensive lifting conveyors (which is reached not more than by 50–60% by now) and the reduction in cutback in open pit mines in order to accommodate facilities for rehandling of rocks from trucks to conveyor and from conveyor to rail transport. In this regard, the object of this study is maximum uniform loading of lifting conveyor by means of continuous rehandling of rocks from trucks to the conveyor and from the conveyor to rail transport on a regular basis, at the minimum dimensions of the rehandling and conveying–loading sites. The key methods are: novel designs of CCM equipment elements; theoretical development of CCM equipment through systematization of lifting–transport–rehandling facilities. Improved efficiency of CCM can be reached with: a through-unloading point meant to eliminate maneuvering of trucks and to ensure maximum continuous and uniform loading of the lifting conveyor; a high-angle tube-type conveyor for coarse rocks after minimized pre-crushing; a rehandling device for loading of rocks from the conveyor to dumpcars arranged on two horizons, at the reduction in the width of transport–rehandling sites by 1.3–1.5 times. For mining-and-transport systems, the transportation devices within CCM equipment are compared, the lifting transport within CCM equipment for steep slopes of deep open pits is systematized, and classifications are proposed for rehandling and unloading facilities with through passage for dump trucks.


For citation: Moldabayev S. K., Aben Y., Kasymbayev E. A., Sarybayev N. O. Complete cyclical-andcontinuous technology equipment for intermodal vehicle–conveyor–rail transport. MIAB. Mining Inf. Anal. Bull. 2019;(7):158-173. [In Russ]. DOI: 10.25018/0236-1493-2019-07-0-158-173.


Acknowledgements: The article is based on the draft GF MON RK 2018/ АR05133548.

Keywords

Deep open pit mine, dump truck, through unloading point, high-angle conveyor, intrapit rail transport, conveyor rehandling facility, systematization and classification of transport–lifting–rehandling facilities.

Issue number: 7
Year: 2019
ISBN: 0236-1493
UDK: 622.271
DOI: 10.25018/0236-1493-2019-07-0-158-173
Authors: Moldabayev S. K., Aben Y., Kasymbayev E. A., Sarybayev N. O.

About authors: S.K. Moldabayev, Dr. Sci. (Eng.), Professor, e-mail: moldabaev_s_k@mail.ru, Aben Yeldos, Master Of Mining, Leading Researcher, e-mail: yeldos.aben@gmail.com, E.A. Kasymbaev, Doctoral Candidate, e-mail: mirkau@mail.ru, N.O. Sarybayev, Doctoral Candidate, e-mail: nurzhigit@inbox.ru, Satbayev University, 050013, Almaty, Kazakhstan. Corresponding author: S.K. Moldabayev, e-mail: moldabaev_s_k@mail.ru.

REFERENCES:

1. Drebenshtedt K., Ritter R., Suprun V. I., Agafonov Y. G. Wordl experience of cyclic and flow technology complexes usage with in-pit crushing. Gornyy zhurnal. 2015, no 11, pp. 81—87. DOI:10.17580/gzh.2015.11.17. [In Russ].

2. Galkin V. I., Sheshko E. Е. Justification of areas of effective use of special types of conveyors on open pit mines. Gornyy informatsionno-analiticheskiy byulleten’. 2014. СВ 1, pp. 400—410. [In Russ].

3. Trubetskoy К. N., Zharikov I. F., Shenderov А. I. Improving design on CFT open pit mine complexes. Gornyy zhurnal. 2015, no 1, pp. 21—24. DOI: 10.17580/gzh.2015.01.04. [In Russ].

4. Yakovlev V. L., Karmayev G. D., Bersenev V. А., Glebov А. V., Semenkin А. V., Sumina I. G. About efficiency of implementing cyclic and continuous technology of mining on pen pit mines. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2016, no 1, pp. 100—109. [In Russ].

5. Karmayev G. D., Bersenev V. А., Semenkin А. V., Sumina I. G. Technical and technological aspects of using steeply iniclined conveyors on open pit mines. Problemy nedropol'zovaniya. 2014, no 4, pp. 154—163. [In Russ].

6. Chetverik M. S., Peregudov V. V., Romanenko A. V. Tsiklichno-potochnaya tekhnologiya na glubokikh kar'erakh. Perspektivy razvitiya. Monografiya [Cyclic and continuous technology on deep open pit mines. Development perspectives: Monograph], Krivoy Rog: Dionis (FL-P D. A. Chernyavskiy), 2012, 356 p.

7. Drizhenko A. Yu., Kozenko G. V., Rykus A. A. Otkrytaya razrabotka zhelezorudnykh rud Ukrainy: sostoyanie i puti sovershenstvovaniya. Monografiya [Open pit mining iron ores of Ukraine: state and improvement ways: Monograph], Dnepropetrovsk, NGU, 2009, 452 p.

8. Shapar' A. G., Lashko V. T., Novozhilov S. M. Peregruzochnye punkty pri avtomobil'no-konveyernom transporte na rudnykh kar'erakh. Monografiya [Loading points during truck-conveyor transport use on ore open pit mines: Monograph], Dnepropetrovsk, Polіgrafіst, 2001, 139 p.

9. Yu Jiang, Zhixiong Li, Guang Yang, Yuelei Zhang, Xiaogang Zhang. Recent progress on smart mining in China. Unmanned electric locomotive. Advances in Mechanical Engineering 2017, Vol. 9(3) 1—10. https://journals.sagepub.com/doi/pdf/10.1177/1687814017695045.

10. Londoño J. G., Knights P. F., Kizil M. S. Modelling of In-Pit Crusher Conveyor alternatives. Mining Technology. Transactions of the Institutions of Mining and Metallurgy: Section A. Vol. 122, 2013. Issue 4, pp. 193—199.

11. Piotr Kruczek, Marta Polak, Agnieszka Wyłomańska, Witold Kawalec, Radoslaw Zimroz. Application of compound Poisson process for modelling of ore flow in a belt conveyor system with cyclic loading. International Journal of Mining, Reclamation and Environment, 2018. Vol. 32, Issue 6, pp. 376—391.

12. Bakhtavar E., Mahmoudi H. Development of a scenario-based robust model for the optimal truck-shovel allocation in open-pit mining. Elsevier: Computers & Operations Research, 2018.

13. Chung H. Ta, Armann Ingolfsson, John Doucette. A linear model for surface mining haul truck allocation incorporating shovel idle probabilities. European Journal of Operational Research, 2013, Vol. 231, Issue 3, pp. 770—778.

14. Molnar V., Buchala V. Desing of a feeding station in ecological transportation system of raw materials. Proceeding of International Multidisciplinary Scientific GeoConference SGEM 2017, 2017, Vol. 17. pp. 519—528.

15. CBC News. URL: http://www.cbc.ca/news/canada/sudbury/mining-labour-shortagecoming- in-next-10-years-1.1864383 (accessed: 12.10.2015). Mining labour shortage coming in next 10 year.

16. Londono J. G., Knights P., Kizil M. Review of in-pit crusher conveyor application. Austrailian Mining Technology Conference, 2012, рр. 63—82.

17. Duvall J. L., McCarthy R., Cooper A., Tutnbull D., Morriss P. In-pit crushing and conveying — not a new idea, but a new reality. Phoenix, AZ U.S.A., 2009, pp. 21.

18. Luchinger P., Maier U., Errath R. A. Active front end technology in the application of a down hill conveyor. Cement Industry Technical Conference, 2006, pp. 20.

19. Kartavyy А. N. Comparative assessment of steeply dipping belt conveyors. Gornyy informatsionno-analiticheskiy byulleten’. 2009, no 12, pp. 98—113. [In Russ].

20. Semenyuk А. А., Reshetnyak S. P., Baichurina N. I., Sultanova N. R. Innovative technology of ore transport of Olenegorsk deposit using steeply inclined conveyor. Gornyy informatsionnoanaliticheskiy byulleten’. 2015. СВ 56, pp. 413—420. [In Russ].

21. Sanakulov К. S., Shemetov P. А. Development of cyclic and flow technology based on steeply inclined conveyors on deep open pit mines. Gornyy zhurnal. 2011, no 8, pp. 34—37. [In Russ].

22. Reshetnyak S. P. Modern tendencies in designing cyclic and flow technology on open pit mines. Gornyy informatsionno-analiticheskiy byulleten’. 2015, no 8, pp. 126—133. [In Russ].

23. Dudchenko А. K., Moldabayev S. К., Nikonenko V. P., Dryzhenko А. Yu., Yusupov K. А. Patent RК 32586, 08.07.2016.

Subscribe for our dispatch