The article discusses how a family of governing factors actualizes conditions for coal and gas outbursts in mines. Such factors include, in particular, volatile yield, moisture content, porosity and depth of coal mining in Kuzbass. In terms of physicochemistry, the critical role of adsorption and absorption processes in coal substance of different rank is discussed. Existence of bifurcation in methane content, moisture content and porosity is found for Kuzbass coal and wider range coal grades: from super anthracite to lignite from the Donets and Lvov–Volyn basins. The experimentally and theoretically examined behavior of empirical relations agrees with actual outburst hazard of basic stratigraphic structures in Kuzbass. The highest gas-dynamic activity is observed in coal seams at the changeover of gradients at the bifurcation point of the outburst-hazardous mining depth. It is shown that at the bifurcation point of methane content, coal seam has genetic ability to generate a disturbing gas-dynamic impulse sufficient for coal self-destruction to be initiated. These qualities explain suddenness of coal and gas outbursts.

For citation:  Kiryaeva T.A. Key factors to govern outburst hazard in Kuzbass coal. MIAB. Mining Inf. Anal. Bull. 2019;(7):185-195. [In Russ]. DOI: 10.25018/0236-1493-2019-07-0-185-195.

Acknowledgements: The work was supported by Russian Science Foundation, Project No. 17-17-01282.


Bifurcation, outburst hazard, coal, sorption, methane content, moisture content, porosity, volatile yield, Langmuir equation.

Issue number: 7
Year: 2019
ISBN: 0236-1493
UDK: 550.3 + 551 + 622
DOI: 10.25018/0236-1493-2019-07-0-185-195
Authors: Kiryaeva T. A.

About authors: T.A. Kiryaeva, Cand. Sci. (Eng.), Senior Researcher, Chinakal Institute of Mining, Siberian Branch, Russian Academy of Sciences, 630091, Novosibirsk, Russia, e-mail:


1. Oparin V. N., Kiryaeva T. A., Khavkin A. Y. On the interaction of thermal and strain-wave processes in coals. Int. J. Nanotechnol., 2018. Vol. 15, Nos. 4/5. Р. 301—310.

2. Adushkin V. N., Oparin V. N. From the alternating-sign explosion response of rocks to the pendulum waves in stressed media. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. Part I. 2012, no 2, pp. 3—27; Part II. 2013, no 2, pp. 3—46; Part III. 2014, no 4, pp. 10—38; Part IV. 2016, no 1, pp. 3—49. [In Russ].

3. Destruktsiya zemnoy kory i protsessy samoorganizatsii v oblastyakh sil'nogo tekhnogennogo vozdeystviya. Otv. red. Mel'nikov [Earth’s crust destruction and self-organization processes in zones under strong production impact. Mel'nikov N. N. (Ed.)], Novosibirsk, Izd-vo SO RAN, 2012, 632 p.

4. Oparin V. N., Zhuravkov M. A., Potapov V. P. Geomekhanicheskie polya i protsessy: eksperimental'no-analiticheskie issledovaniya formirovaniya i razvitiya ochagovykh zon katastroficheskikh sobytiy v gorno-tekhnicheskikh i prirodnykh sistemakh [Geomechanical fields and processes: experimental and analytical research into initiation and growth of source zones of disastrous events in mining and in nature]. Vol. 1. Novosibirsk, Izd-vo SO RAN, 2018, 540 p.

5. Oparin V. N. Theoretical Fundamentals to Describe Interaction of Geomechanical and Physicochemical Processes in Coal Seams. Journal of Mining Science, 2017, Vol. 53, No. 2,  pp. 201—215.

6. Oparin V. N., Adushkin V. V. Regional clustering of coal fields in Kuzbass with respect to gasdynamics activity. part ii: influence of geothermal, geodynamic and physicochemical processes. Gornyy informatsionno-analiticheskiy byulleten’. 2018, no 10, pp. 5—29. [In Russ].

7. Wang Kaixing, Dou Linming, Pan Yishan Study of tunnel roof anti impact and energy absorption effect on block overburden rock mass failure. Journal of China University of Mining and Technology. 2017, Vol. 46, No. 6, pp. 1212—1217.

8. Zhou A. T., Wang K., Oparin V. N. Regularities of Two-Phase Gas Flow under Coal and Gas Outbursts in Mines. J. Mining Sci. 2017. Vol. 53, No 3, pp. 533—543.

9. Zuzana Weishauptová, Oldřich Přibyl, Ivana Sýkorová, Vladimír Machovič. Effect of bituminous coal properties on carbon dioxide and methane high pressure sorption. Fuel, 2015, 139, pp. 115—124.

10. Kiani A., Sakurovs R., Grigore M., Sokolova A. Gas sorption capacity, gas sorption rates and nanoporosity in coals. International Journal of Coal Geology, 2018. 200, pp. 77—86.

11. Sakurovs R., Koval L., Grigore M., Sokolova A., Ruppert L. F., Melnichenko Y. B. Nanometresized pores in coal: Variations between coal basins and coal origin. International Journal of Coal Geology, 2018. 186, pp. 126—134.

12. Staib, G., Sakurovs, R., Gray, E.M.A. Dispersive diffusion of gases in coals. Part I: Model development. Fuel, 2015, 143, pp. 612—619.

13. Oparin V. N., Kiryaeva T. A., Potapov V. P. Methods and models for analyzing methane sorption capacity of coal based on its physicochemical characteristics. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017, no 4, pp. 14—33. [In Russ].

14. Khodot V. V. The effect of humidity on the gas content of fossil coal. Izvestiya Akademii nauk SSSR. 1952, no 12, pp. 45—49. [In Russ].

15. Khodot V. V., Yanovskaya M. F., Premysler Yu. S. Fiziko-khimiya gazodinamicheskikh yavleniy v shakhtakh [Physicochemistry of gas-dynamic phenomena in mines], Moscow, 1973, 141 p.

16. Kiryaeva T. A., Oparin V. N. Certificate of state registration of database RU 2018620032, 09.01.2018 г.

17. Kiryaeva T. A., Oparin V. N. Certificate of state registration of database RU 2018620035, 09.01.2018.

18. Kiryaeva T. A., Oparin V. N. Certificate of state registration of database RU 2018620036, 09.01.2018.

19. Kiryaeva T. A., Oparin V. N. Certificate of state registration of database RU 2018620264, 13.02.2018.

Subscribe for our dispatch