METHOD TO DETECT HAZARDOUS AREAS IN ROCK MASS FROM SEISMOACOUSTIC OBSERVATIONS

The research team of the Institute of Mining, Far East Branch RAS, has developed the method of geomechanical monitoring of rock mass. This method allows detecting hazardous zones of seismoacoustc activity and reveals parameters of dynamic formation of such zones. The approach implemented within this method rests upon the hypothesized three-stage model of irreversible failure of a loaded geo-medium. According to this model, the final stage of failure is an irreversible avalanche process accompanied by potential-to-kinetic energy transition. Using the developed algorithms, the seismically and acoustically active zones are detected by the data of continuous monitoring; then, these zones are identified and classified in accordance with predetermined classes, and connected with the above listed stages of failure. The proposed algorithm of background radiation filtering by the nonparametric density estimator removes extra data for further identification of seismoacoustically active zones and sufficiently reliably puts the background radiation events in a separate group, which allows the parametric estimation of the background radiation with intent to predict dynamic events in rock mass. It is proposed to use the mathematical apparatus of probabilistic clustering using the Gustafson–Kessel algorithm to detect possible clusters in the form of ellipsoids with arbitrarily oriented axes, which takes into account the stochastic nature of random processes intrinsic to the wildlife objects. Transition to the parametric description of a focus zone by using the characteristic ellipsoid cuts the amount of data in use by more than 100 times, and allows analysis of the volume and shape of the focus zone both in statics and dynamics. The described algorithms were tested for a long time under mining conditions of rockburst-hazardous deposits of the Priargunsky Industrial Mining and Chemical Union.


For citation:  Gladyr A. V., Kursakin G. A., Rasskazov M. I., Konstantinov A. V. Method to detect hazardous areas in rock mass from seismoacoustic observations. MIAB. Mining Inf. Anal. Bull. 2019;(8):21-32. [In Russ]. DOI: 10.25018/0236-1493-2019-08-0-21-32.

Keywords

Rock deformation, geomechanical monitoring, acoustic event, microseismic event, fractured medium, data filtering, cluster analysis, focus shape.

Issue number: 8
Year: 2019
ISBN: 0236-1493
UDK: 622.011:539.3
DOI: 10.25018/0236-1493-2019-08-0-21-32
Authors: Gladyr A. V., Kursakin G. A., Rasskazov M. I., Konstantinov A. V.

About authors: A.V. Gladyr, Senior Researcher, e-mail: rush3112@mail.ru, G.A. Kursakin, Dr. Sci. (Eng.), Chief Researcher, M.I. Rasskazov, Researcher, A.V. Konstantinov, Junior Researcher, Mining Institute, Far Eastern Branch of Russian Academy of Sciences, 680000, Khabarovsk, Russia. Corresponding author: A.V. Gladyr, e-mail: rush3112@mail.ru.

REFERENCES:

1. Rasskazov I. Yu. Kontrol' i upravlenie gornym davleniem na rudnikakh Dal'nevostochnogo regiona [Control and management of rock pressure in the mines of the Far Eastern region], Moscow, Izd-vo «Gornaya kniga», 2008, 329 p.

2. Rasskazov I. Yu., Iskra A. Yu., Kalinov G. A., Anikin P. A., Gladyr' A. V., Rasskazov M. I., Sidlyar A. V. Features of recording and processing geoacoustic control data of the rock mass at the existing mine. Gornyy informatsionno-analiticheskiy byulleten’. 2011, no 8, pp. 212—218. [In Russ].

3. Zhou K. P., Lin Y., Deng H. W., Li J. L., Liu C. J. Prediction of rockburst classification using cloud model with entropy weight. Transactions of Nonferrous Metals Society of China. 2016. Vol. 26, Iss. 7. pp. 1995—2002.

4. Meifeng C. Prediction and prevention of rockburst in metal mines . A case study of Sanshandao gold mine. Journal of Rock Mechanics and Geotechnical Engineering. 2016. Vol. 8, Iss. 2. рр. 204—211.

5. Ma T. H., Tang C. A., Tang L. X., Zhang W. D., Wang L. Rockburst characteristics and microseismic monitoring of deep-buried tunnels for Jinping II Hydropower Station. Tunnelling and Underground Space Technology. 2015. Vol. 49. рр. 345—368.

6. Shan-Chao Hu, Yun-liang Tan, Jian-guo Ning, Wei-Yao Guo, Xue-sheng Liu Multiparameter Monitoring and Prevention of Fault-Slip Rock Burst. Shock and Vibration. 2017. Vol. 2017, Article ID 7580109, 8 p. https://doi.org/10.1155/2017/7580109

7. Rasskazov I. YU., TSirel' S. V., Rozanov A. O., Tereshkin A. A., Gladyr' A. V. Using of seismoacoustic monitoring data to determine the nature of the development of the source of destruction of the rock mass. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2017, no 2, pp. 29—37. [In Russ].

8. Orlov A. I. Nonparametric density estimates in topological spaces. Uchenye zapiski po statistike, vol. 45, Moscow, Nauka, 1983, pp. 12—40.

9. Orlov A. I. Nuclear density estimates in spaces of arbitrary nature. Statisticheskie metody otsenivaniya i proverki gipotez. Interuniversity collection of scientific works. Perm, Permskiy gosuniversitet, 1996, pp. 68—75.

10. Bowman A. W. An alternative method of cross-validation for the smoothing of density estimates. Biometrika 71. 1984, pp. 353—360.

11. Rudemo M. Empirical choice of histograms and kernel density estimators. Scandinavian Journal of Statistics 9. 1982, pp. 65—78.

12. Gladyr' A. V. Разработка методики идентификации фонового сейсмоакустического излучения на основе метода непараметрической оценки плотности. Gornyy informatsionnoanaliticheskiy byulleten’. 2016, no S21, pp. 51—60. [In Russ].

13. Enyukov I. S. Metody, algoritmy, programmy mnogomernogo statisticheskogo analiza: paket PPSA [Methods, algorithms, programs for multivariate statistical analysis: the PPSA package], Moscow, Finansy i statistika, 1986, 232 p.

14. Zhambyu M. Ierarkhicheskiy klaster-analiz i sootvetstviya [Hierarchical Cluster Analysis and Compliance], French–Russian translation, Moscow, Finansy i statistika, 1988, 342 p.

15. Patrik E. Osnovy teorii raspoznavaniya obrazov. Pod red. B. R. Levina [Foundations of the theory of pattern recognition. Levin B. R. (Ed.)], English–Russian translation, Moscow, Sov. Radio, 1980, 408 p.

16. Berikov V. S., Lbov G. S. Current trends in cluster analysis. Vserossiyskiy konkursnyy otbor obzorno-analiticheskikh statey po prioritetnomu napravleniyu «Informatsionno-telekommunikatsionnye sistemy», 2008, 26 p. [In Russ].

17. Bezdek J. C. Pattern Recognition with Fuzzy Objective Function. New York: Plenum Press. 1981.

18. Gustafson D. E., Kessel W. C. Fuzzy Clustering with a Fuzzy Covariance Matrix. Proc. of IEEE CDC, San-Diego, USA. P.761—766 (1978).

19. Babuska R. Fuzzy. Modeling for Control. Boston: Kluwer Academic Publishers. 1998.

20. Xei X. L., Beni G. A. Validity Measure for Fuzzy Clustering. IEEE Trans. on Pattern Anal. and Machine Intell. 3 (8). 1991. P. 841 — 846.

21. Yager R., Filev D. Essentials of Fuzzy Modeling and Control. USA: John Wiley & Sons. 1984. 387 p.

22. Rasskazov I. Yu., Saksin B. G., Petrov V. A., Prosekin B. A. Geomechanical conditions and features of the dynamic manifestations of rock pressure at the Antey deposit. Fiziko-tekhnicheskiye problemy razrabotki poleznykh iskopayemykh. 2012, no 3, pp. 3—13. [In Russ].

23. Cheban A. Yu. Method of finishing a deep quarry using milling machines. Marksheyderiya i nedropol'zovanie. 2017, no 4, pp. 23—29. [In Russ].

24. Manchao H., Fuqiang R., Dongqiao L. Rockburst mechanism research and its control. International Journal of Mining Science and Technology. 2018. Vol. 28, Iss. 5. рр. 829—837.

Subscribe for our dispatch