DETERMINATION OF ROCK DESTRESSING PARAMETERS AT THE ENDS OF DISASSEMBLING ROOM

The coal mining industry in Russia distinctively gravitates toward increasing output of fully-mechanized longwall faces. With gain in productivity of longwall mining equipment, the diseconomies of its outage also grow. There can be many reasons for the downtime of the fully mechanized longwall faces. The idle time in re-assembly is avoidless; thus, it is highly important to minimize such idle time in order to improve performance of mines. The main causes of increase in the reassembly time include roof falls in working areas. Roof falls are the most intensive at the ends of disassembling rooms. One of the efficient techniques to enhance roof rock stability is stress relaxation. This study aims to determine parameters of immediate roof rock destressing in disassembling rooms in thick and gently dipping coal seam mining based on the finite-element geomechanical model. The article presents the geomechanical modeling procedure (computational schemes) for assessment of stress state in rock mass around a disassembling room. The parameters of the limiting state zones in coal seam and in roof rocks of the disassembling room are estimated. The parameters of the method for the immediate roof rock unloading from high stresses at the ends of the disassembling room by distress blasting are substantiated. The governing parameters of the technologies include: destress zone width, destress hole diameter, length and spacing, as well as drilling time before longwall approach.


For citation:  Karpov G. N., Kovalski E. R., Smychnik A. D. Determination of rock destressing parameters at the ends of disassembling room. MIAB. Mining Inf. Anal. Bull. 2019;(8):95-107. [In Russ]. DOI: 10.25018/0236-1493-2019-08-0-95-107.

Keywords

Gently dipping coal seams, underground coal mining, longwall equipment disassembling, disassembling room, rock mass unloading, immediate roof stability, stress state, destress holes.

Issue number: 8
Year: 2019
ISBN: 0236-1493
UDK: 622.2
DOI: 10.25018/0236-1493-2019-08-0-95-107
Authors: Karpov G. N., Kovalski E. R., Smychnik A. D.

About authors: G.N. Karpov (1), Cand. Sci. (Eng.), Assistant Professor, e-mail: prk42@mail.ru, E.R. Kovalski (1), Cand. Sci. (Eng.), Assistant Professor, e-mail: e.r.kovalsky@gmail.com, A.D. Smychnik, Dr. Sci. (Eng.), Professor, OOO K-Potash Services, Russia, e-mail: suma35799@gmail.com. 1) Saint Petersburg Mining University, 199106, Saint-Petersburg, Russia. Corresponding author: G.N. Karpov, e-mail: prk42@mail.ru.

REFERENCES:

1. Zubov V. P. Applied technologies and current problems of resource-saving in underground mining of stratified deposits. Gornyy zhurnal. 2018, no 6, pp. 77—83. [In Russ].

2. Zubov V. P. Status and directions of improvement of development of coal seams on perspective Kuzbass coal mines. Zapiski Gornogo instituta. 2017. Vol. 225, pp. 292—297. [In Russ].

3. Galvin J. M. Ground Engineering — Principles and Practices for Underground Coal Mining. Springer International Publishing. 2016. 684 p.

4. Sengani F., Amponsah-Dacosta F. The application of the face-perpendicular preconditioning technique for de-stressing seismically active geological structures. Mining technology: transactions of the institute of mining and metallurgy, 2018, vol. 127, no 4, pp. 241—255.

5. Gridina E. B., Pasynkov A. V., Andreev R. E. Comprehensive approach to managing the safety of miners in coal mines. Innovation-based development of the mineral resources sector: challenges and prospects. 11th Conference of the Russian-German raw materials, 2018, pp. 85.

6. He M., Zhu G., Guo Z. Longwall mining «cutting cantilever beam theory» and 110 mining method in China-The third mining science innovation. Journal of rock mechanics and geotechnical engineering, 2015, vol. 7, no 5, pp. 483—492.

7. Kang H., Lv H., Zhang X., etc. Evaluation of the ground response of a pre-driven longwall recovery room supported by concrete cribs. Rock mechanics and rock engineering 49, 2016, no 3, pp. 1025—1040.

8. Liu C., Yang Z., Gong P., Wang K., Zhang X., Zhang J., Li Y. Accident analysis in relation to main roof structure when longwall face advances toward a roadway. A case study. Advances in civil engineering, 2018, vol. 2018.

9. Rutty Y., Payne D., Mackenzie A. The evolution of pre-driven recovery roadways at crinum mine. The 35th International conference on ground control in mining, 2016, pp. 80—87.

10. Basov V. V. Evaluation procedure of conformance between numerical modeling and in-situ measurement data on geomechanical parameters of rock mass near intersections in mines. MIAB. Mining Inf. Anal. Bull. 2019, no 3, pp. 51—62. DOI: 10.25018/0236-1493-2019-03-0-51-62. [In Russ].

11. Zuev B. Yu., Zubov V. P., Fedorov A. S. Prospects for the use of models from equivalent materials for the study of geomechanical processes in underground mining of solid minerals. Gornyy zhurnal. 2019, no 6, pp. 77—82. [In Russ].

12. Kolikov K. S., Manevich A. I., Mazina I. E. Stress-strain analysis in coal and rock mass under traditional mining with full caving and in technology with backfilling. Eurasian mining, 2018, vol. 2018, no 2, pp. 15—17.

13. Pariseau W. G., McCarter M. K., Wempen J. M. Comparison of closure measurements with finite element model results in an underground coal mine in central Utah. International journal of mining science and technology, 2019, vol. 29, no 1, pp. 9—15.

14. Song G., Chugh Y. P., Wang J. A numerical modelling study of longwall face stability in mining thick coal seams in China. International journal of mining and mineral engineering, 2017, vol. 8, no 1, 2017, pp. 35—55.

15. Han C. L., Zhang N., Li B. Y. Control technology and application for surrounding rock deformation in T-junction area of gob-side entry retaining. 2nd Global conference on civil, structural and environmental engineering, GCCSEE 2013. Shenzhen, China, 28—29 September 2013.

16. Karpov G. N. Obosnovanie tekhnologii demontazha ochistnykh mekhanizirovannykh kompleksov pri vysokoy kontsentratsii gornykh rabot [Justification of longwall recovery technology in conditions of high performance mining], Candidate’s thesis, Saint-Petersburg, NMSU «Gornyy», 2013, 165 p.

17. Zhang P. Experience in ground control evaluation of longwall recovery using numerical modeling and in situ monitoring. Advances in Coal Mine Ground Control; 2017. pp. 409—437.

18. Zhang P., Van Dyke M., Su D., Esterhuizen E., Trackemas J. Roof failure in longwall headgates — Causes, risks, and prevention. 52nd U.S. Rock mechanics/geomechanics symposium, Seattle, United States, 17—20 June 2018.

19. Liu H., He Y., Xu J., Han L. Numerical simulation and industrial test of boreholes destressing technology in deep coal tunnel. Journal of the China coal society, 2007, vol. 32, no 1, pp. 33—37.

20. Nikiforov A. V., Vinogradov E. A., Kochneva A. A. Analysis of multiple seam stability. International journal of civil engineering and technology. 2019, 10(2), pp. 1132—1139.

21. Peng S. S. Coal Mine Ground Control: Third Edition. NY: Wiley, 2008, 764 pp.

22. Magomet R. D., Seregin A. S. Enhancement of pre-mining methane drainage efficiency. Gornyy zhurnal. 2017, no 7, pp. 92—95. [In Russ].

23. Smirniakov V. V., Smirniakova V. V. Improving safety of mining operations by upgrading the methods of gas presence monitoring in the sheth grooves. Journal of industrial pollution control, no 33 (1), May 2017, pp. 856—863.

24. Makarov A. B. Prakticheskaya geomekhanika [Practical geomechanics], Moscow, izd-vo «Gornaya kniga», 2006, 391 p.

Our partners

Подписка на рассылку

Раз в месяц Вы будете получать информацию о новом номере журнала, новых книгах издательства, а также о конференциях, форумах и других профессиональных мероприятиях.