INFLUENCE OF WIDTH AND HEIGHT OF ROOMS ON MICROSEISMIC ACTIVITY IN POTASH MINES

Mining of Russia’s largest Upper Kama potash salt reserves is associated with plenty of adverse events with disastrous effects sometimes. One of the hazardous deformation rate indicators effective for nearly real-time deformation monitoring is microseismicity. For instance, seismological monitoring of the Upper Kama potash salt mines was launched in 1995 and is being continued up to this date. The long-term observations show that variations in seismic activity in space and time are closely connected with geotechnical parameters of mines. One of the key geotechnical parameters is the size of rooms (width and height) to be selected based on geological conditions of mining and capacities of equipment. The study of the room width effect on microseismic activity reveals a low correlation of these two parameters (on average ≈ 0.5) in terms of all seismic events within a mine. At the same time, the geometrical parameters of rooms have influence on possible energy ranges of the rockfall-type seismic events. In the latter case, a linear relation is found between the maximum moment magnitude and the room geometry. Thus, with the a priori known width and height of rooms as well as mine layouts, it is possible to assess beforehand the maximum possible magnitude of future seismic events of the rockfall type.


For citation:  Zlobina TV. Influence of width and height of rooms on microseismic activity in potash mines. MIAB. Mining Inf. Anal. Bull. 2019;(8):136-145. [In Russ]. DOI: 10.25018/0236-1493-201908-0-136-145.

Keywords

Potash mine, mining systems, room width and height, seismological monitoring, seismic events, rockfall, microseismic activity.

Issue number: 8
Year: 2019
ISBN: 0236-1493
UDK: 622.83+550.34.01
DOI: 10.25018/0236-1493-2019-08-0-136-145
Authors: Zlobina T. V.

About authors: Zlobina T.V., Engineer, e-mail: tati.verkholantseva@gmail.com, Mining Institute of Ural Branch, Russian Academy of Sciences, 614007, Perm, Russia.

REFERENCES:

1. Adushkin V. V., Turuntaev S. B. Tekhnogennaya seysmichnost' — indutsirovannaya i triggernaya [Technogenic seismicity — induced and trigger], Moscow, IDG RAN, 2015, 364 p.

2. Pechmann J. C., Walter W. R., Nava S. J., Arabasz W. J. The February 3, 1995, ML 5.1 seismic event in the trona mining district of southwestern Wyoming. Seismological Research Letters, 1995, no 66 (3), pp. 25—34. DOI: 10.1785/gssrl.66.3.25.

3. Kubacki T., Koper K. D., Pankow K. L., McCarter M. K. Changes in mining-induced seismicity before and after the 2007 Crandall Canyon Mine collapse. Journal of Geophysical Research: Solid Earth, 2014, no 119 (6), pp. 4876—4889. DOI: 10.1002/2014JB011037.

4. Rudzinski Ł., Cesca S., Lizurek G. Complex rupture process of the 19 March 2013, Rudna mine (Poland) induced seismic event and collapse in the light of local and regional moment tensor inversion. Seismological Research Letters, 2016, Vol. 87(2A), pp. 274—284. DOI:10.1785/0220150150.

5. German V. I. Rock failure prediction in mines by seismic monitoring data. Fiziko-tekhnicheskie problemy razrabotki poleznykh iskopaemykh. 2014, no 2, pp. 99—109. [In Russ].

6. Zhukova S. A., Samsonov A. V. Assessment of natural impact on the seismicity in Khibiny Mountains. Gornyy zhurnal. 2014, no 10, pp. 47—51. [In Russ].

7. Jian-po L., Yuan-hui L., Shi-da X. Relationship between microseismic activities and mining parameters during deep mining process. Journal of Applied Geophysics, 2018, Vol. 159, pp. 814—823. DOI: 10.1016/j.jappgeo.2018.10.018.

8. Zhao Y., Yang T., Zhang P., Zhou J., Yu Q. Numerical simulation of rock damage process based on microseismic parameters. Journal of Mining and Safety Engineering, 2018, Vol. 35 (1), pp. 213—220. DOI: 10.13545/j.cnki.jmse.2018.01.029.

9. De Santis F., Contrucci I., Kinscher J., Bernard P., Renaud V., Gunzburger Y. Impact of Geological Heterogeneities on Induced-Seismicity in a Deep Sublevel Stoping Mine. Pure and Applied Geophysics, 2019, Vol. 176 (2), pp. 697—717. DOI: 10.1007/s00024-018-2020-9.

10. Malovichko A. A., Dyagilev R. A., Malovichko D. A. Seismological monitoring at the mines of Verkhnekamskoye potassium deposit. Gornyy zhurnal. 2008, no 10, pp. 25—29. [In Russ].

11. Dyagilev R. A. Shulakov D. Yh., Verkholantsev A. V., Glebov S. V. Seismic monitoring in potash mines: observation results and development aspects. Gornyy zhurnal. 2013, no 6, pp. 50—54. [In Russ].

12. Shulakov D. Y., Verkholantseva T. V. Relation between microseismic activity and parameters of mining in the Verkhnekamskoye potash deposit. 8th Int. Symp. On Rockbursts and Seismicity in Mines (eds. Malovichko., A. and Malovichko., D.), Geophysical Survey of Russian Academy of Science and Mining Institute of Ural Branch of Russian Academy of Science, Obninsk-Perm, 2013, pp. 505—510.

13. Malovichko A., Malovichko D., Shulakov D., Dyagilev R. Multi scale seismicity at potash mines. main results of the long-term seismic monitoring at Verkhnekamskoye deposit. International Multidisciplinary Scientific GeoConference Surveying Geology and Mining Ecology Management, SGEM, 2015, Vol. 3(1), pp. 485—492.

14. Verkholantseva T. V., Dyagilev R. A. Influence of backfilling on seismic activity in potash mines. Gornyy informatsionno-analiticheskiy byulleten’. 2016, no 12, pp. 115—123. [In Russ].

15. Verkholantseva T. V., Dyagilev R. A. GIS technology for studying influence of mining parameters on seismicity in potash mines. Problemy nedropol'zovaniya. 2016, no 2 (9), pp. 19—25. [In Russ].

16. Metodicheskoe rukovodstvo po vedeniyu gornykh rabot na kaliynykh rudnikakh OAO «Sil'vinit» / OAO «Galurgiya» [Methodological guidelines for mining in the potash mines of OJSC Silvinit], Novosibirsk, Nauka, 2011, 487 p. [In Russ].

17. Lomakin I. S. Deformirovanie i razrushenie nesushchikh elementov kamernoy sistemy razrabotki v usloviyakh sloisto-neodnorodnogo stroeniya porodnogo massiva [Deformation and destruction of the bearing elements of the chamber system development in the conditions of a layered-inhomogeneous structure of the rock mass], Candidate’s thesis, Perm, GI UrO RAN, 2015, 197 p.

18. Dolgov P. V., Polyanina G. D., Zemskov A. N. Metody prognoza i predotvrashcheniya gazodinamicheskikh yavleniy v kaliynykh rudnikakh [Methods of prediction and prevention of gasdynamic phenomena in potash mines], Alma-Ata, Nauka, 1987, 176 p.

19. Shulakov D. Yu., Malovichko D. A., Verkholantseva T. V. Study of mechanisms of seismic events at the Verkhnekamsk potassium salt Deposit. Vestnik molodykh uchenykh PGNIU: Collection of scientific papers: in 2 vol. Baturin E.N. (Ed.). Perm, Perm. gos. nats. issl. un-t, 2011, pp. 94—102. [In Russ].

20. Dyagilev R. A. Definitaion Mmax of collapse earthquakes in regions of prevalence of anthropogenic karst. Sovremennye metody obrabotki i interpretatsii seysmologicheskikh dannykh. Materialy

XIII Mezhdunarodnoy seysmologicheskoy shkoly. Obninsk, FITS EGS RAN, 2018, pp. 95—98. [In Russ].

Subscribe for our dispatch