The article describes the technology and device for efficient use of coal in steeply dipping beds through its complete in-situ burning with thermal-to-electric energy conversion. Production holes are made along the strike of coal seams of complex and nonuniform structure by a controllable drilling tool capable to break both coal and dirt rocks without contacting them and undeviating from the preset direction. It is intended to subject steeply dipping coal seams to steam-and-air blowing to ensure displacement of high-head formation water with pressure to 10 MPa and to heat coal. With this end in view, brand new compressor equipment has been designed to operate hot steam-and-air blast mixture at very high pressure in order to displace formation water beyond the fire-heated reactor range for stimulation of gasification. The process flow chars are developed for complete burning of steep-dipping coal with hot gas production at the steam generator inlet. Complete burning yields high-temperature and high-compression inert products at a level characterized by the thickness and gas impermeability of overburden above the top edges of treated coal seams. Overheated steam goes to the hydroimpact compressors and steam-hydraulic turbines, and is converted to electric energy. By-produced water steam or hot water can be consumed in the nearby localities.

For citation: Buktukov N. S., Gumennikov E. S., Mashataeva G. A. In-situ gasification of steeply dipping coal beds with production hole making by supersonic hydraulic jets. MIAB. Mining Inf. Anal. Bull. 2019;(9):30-40. [In Russ]. DOI: 10.25018/0236-1493-2019-09-0-30-40.


Black coal, in-situ gasification, steeply dipping beds, steam-and-air blast, steam generator, hydroimpact compressor, hydroimpulsive drilling, steam-hydraulic turbine.

Issue number: 9
Year: 2019
ISBN: 0236-1493
UDK: 622.33:69.05
DOI: 10.25018/0236-1493-2019-09-0-30-40
Authors: Buktukov N. S., Gumennikov E. S., Mashataeva G. A.

About authors: N.S. Buktukov, Academician of NAS RK, Dr. Sci. (Eng.), Professor, Director, e-mail:, E.S. Gumennikov, Senior Researcher, e-mail:, G.A. Mashataeva, Magister, Junior Researcher, e-mail:, D.A. Kunaev Mining Institute, 050046, Almaty, Kazakhstan. Corresponding author: G.A. Mashataeva, e-mail:


1. Geologiya mestorozhdeniya uglya i goryuchikh slantsev SSSR, T. 5, Kn. 1. [ГGeology of coal and fuel shale deposits of the USSR, Vol. 5, book 1], Moscow, Nedra, 1973, 720 p.

2. Inkin O. V., Dereviahina N. I. Study of the migration processes in the roof of an underground gas-generator. Dniprop. Univer. bulletin, Geology, geography, 26(1), 64—70. doi: 10.15421/111807.

3. Bodnaruk M. N. Ecological-and-economic analysis of current on-situ gasification in coal mines. Gornyy informatsionno-analiticheskiy byulleten’. 2011. Special edition 6, pp. 272—273.

[In Russ].

4. Falshtynskyi V., Saik P., Lozynskyi V., Dychkovskyi R., Petlovanyi M.. Innovative aspects of underground coal gasification technology in mine conditions. Mining of Mineral Deposits, 2018, 12(2), 68—75,

5. Kondyrev B. I., Nikolaychuk N. A., Belov A. V., Grebenyuk I. V. In-situ gasification of the Rakovskoe brown coal deposit. Neftegazovoe i gornoe delo, geologiya. 2012, pp. 192—193. [In Russ].

6. Sunil K Singh. Policy and Regulatory Issues for Underground Coal Gasification in India IOP Conf. Series: Earth and Environmental Science 76 (2017) 012012. doi:10.1088/17551315/76/1/012012.

7. Shabarov A. N., Tsirel' S. V., Goncharov E. V., Zubkov V. V. Gaseous fuel production technology based on integrated in-situ gasification and drainage of coal seams.Zapiski Gornogo instituta. 2016. Vol. 220, pp. 545—550. DOI 10.18454/PMI.2016.4.545. [In Russ].

8. Buktukov N. S., Gumennikov E. S. The new technology based on hydroimpulsive rock breaking — Prospective way of efficient development of mineral resources. Kompleksnoe ispol'zovanie mineral'nogo syr'ya. 2018, no 3, pp. 7—14. [In Russ].

9. Asanov A. A., Gumennikov E. S. Patent application No. 20180032.1. Kyrgyzpatent, 02/3084, 06.11.2018.

10. Zрabin A. B., Golovin K. A., Polyakov A. V. Rock breaking with pulsed high-speed water jets. Gornoe oborudovanie i elektromekhanika. 2006, no 4, pp. 43—46. [In Russ].

11. Cooley W. C. Advances in the technology of fluid jets: past, present and targets for the 21st century. Proc. of the 5th Pacific Rim International Conference on Water Jet Technology, WJTSJ. Tokyo (Japan). 1998. Рp. 1—8.

12. Atanov G., Gubsky V., Semko A. The Pressure Rise Factor For Powder Hydro-cannon. Proc. of the 13th International Conference on Jetting Technology. Sardinia, Italy. October 29—31, 1996. Рp. 91—103.

13. Atanov G. A., Semko A. N., Petrenko O. P., Geskin E. S., Samardzic V., Goldenberg В. Peculiarities of the powder water cannon operation. Proc. of the ASME Int. Mechanical Engineering Congress & Exp. Washington (USA). 2003.

14. Atanov G. A., Semko A. N. The powder water cannon. Proc. of the Int. Summer Science School on High-Speed Hydrodynamics (HSH 2002). Cheboksary (Russia), Washington (USA). 2002. Рp. 419—424.

15. Biletskiy M. T., Ratov B. T., Kozhevnikov A. A., Bayboz A. R., Delikesheva D. N.Improvement of the theoretical model of rock breaking at well boring. Izvestiya NAN RK. Seriya geologii i tekhnicheskikh nauk. 2018, no 2.

16. Atanov G. A., Geskin E. S., Petrenko O. P., Semko A. N. On the influence of various factors on parameters of the water gun. Prikladnye zadachi matematiki i mekhaniki: Materialy XII nauchnoy konferentsii uchenykh Ukrainy, Rossii, Belarusi, Sevastopol, September 15—21, 2003, Sevastopol, Izd-vo SevNTU, 2003, pp. 134—137. [In Russ].

17. Petrenko O., Geskin E. S., Atanov G. A., Semko A., Goldenberg B. Numerical Modeling of High-Speed Water Slugs. Transaction of the ASME. Journal of Fluids Engineering. Vol. 126. No 2. Marth 2004. Pp. 206—209.

18. Semko A. N. Impul'snye strui zhidkosti vysokogo davleniya [High-Pressure Impulse Jets], Donetsk, Veber (Donetskoe otdelenie), 2007, 149 p.

19. Buktukov N. S., Gumennikov E. S., Mashatayeva G. A. Mass destruction of strong rocks by periodic emissions of hydro charges. Kompleksnoe Ispol’zovanie Mineral’nogo Syr’a. 2019, no 2, pp. 42—50,

20. Zhalgasuly N., Bitimbaev M. Zh. Creation of powerful accumulators of pulse energy. Trudy mezhdunarodnoy nauchno-prakticheskoy konferentsii «Innovatsionnye puti razvitiya neftegazovoy otrasli RK». Almaty, 2007, pp. 262—269. [In Russ].

21. Zhalgasuly N., Toktamysov M. T. Use prospects of low-grade coal. Trudy mezhdunarodnoy nauchno-prakticheskoy konferentsii «Gornye nauki Kazakhstana — itogi i perspektivy». Almaty, 2004. [In Russ].

22. Azimbekov M. K., Bitimbaev M. Zh., Zhalgasuly N. Zh., Bektybaev A. A. Novye metody podzemnoy gazifikatsii uglya [New methods of in-situ gasification]. Proceedings of the Mining Institute, Vol. 66. Almaty, 2003, pp. 84—89.

23. Gumennikov E. S. Innovation patent No 5572, 15.12.1997.

24. Kunzharikova K. M. Innovation patent No 64971, 16.08.2010.

25. Asanov A. A., Gumennikov E. S. Patent application No. 20180031.1. Kyrgyzpatent, 02/2797, 05.10.2018.

26. Pechuro N. S. Khimiya i tekhnologiya sinteticheskogo zhidkogo topliva i gaza [Chemistry and Technology of Synthetic Liquid Fuel and Gas], Moscow, Khimiya, 1986, pp. 176.

27. Spravochnik khimika. T. 6 [The Chemist’s Handbook. Vol. 6], Leningrad, Khimiya, 1967, pp. 163—164.

Subscribe for our dispatch