FEATURES OF CONSTRUCTING POLYGRADIENT MATRICES FOR HIGH-GRADIENT SEPARATORS WITH SUPERCONDUCTING MAGNETIC SYSTEMS

The features of constructing matrices with collecting elements for high-gradient magnetic separators with superconducting magnetic systems for treatment of weakly magnetic feedstock are discussed. It is shown that such matrices should have considerably smaller mass of ferromagnetic elements as against the earlier used matrices in order to minimize level of the magnetic interaction between the collecting elements and superconducting magnetic systems. A few novel matrices with low ferromagnetic fill factor from 6 to 38% are proposed and manufactured, namely, the matrices with prismatic collecting elements, rod and plate-like matrices, as well as matrices made of composites with impregnations of small-size ferromagnetic concentrators on the collecting surface. Their magnetic force characteristics are calculated, and the results are presented in the form of graphs and magnetic charts of the working space of the matrices. The model cartridges with new type matrices are pretested in the static magnetic field of high-capacity electromagnetic installation at different densities of magnetic flux. It is shown that in the fields of the superconducting magnetic systems, it is possible to reach much higher magnetic forces than in the present-day industrial separators with high-capacity electromagnetic systems.

 

Acknowledgements: The present work is funded by the Ministry of science and higher education of the Russian Federation under the Agreement No. 14.604.21.0175 from 29 September 2017, ID RFMEFI60417X0175.


For citation: Tagunov E.Ya., Izmalkov V. A., Puchkov V. A., Diev D. N. Features of constructing polygradient matrices for high-gradient separators with superconducting magnetic systems . MIAB. Mining Inf. Anal. Bull. 2019;(9):102-114. [In Russ]. DOI: 10.25018/0236-1493-2019-09-0-102-114.

Keywords

High-gradient magnetic separation, high-gradient magnetic separator, polygradient separator, collecting element, polygradient matrix, superconducting magnetic system.

Issue number: 9
Year: 2019
ISBN: 0236-1493
UDK: 622.778.621.928
DOI: 10.25018/0236-1493-2019-09-0-102-114
Authors: Tagunov E. Ya., Izmalkov V. A., Puchkov V. A., Diev D. N.

About authors: Е.Ya. Tagunov (1), Cand. Sci. (Phys. Mathem.), Assistant Professor, e-mail: tagunov@magnetite.ru, V.A. Izmalkov (1), Cand. Sci. (Eng.), e-mail: izmalkov@magnetite.ru, V.A. Puchkov (1), Cand. Sci. (Phys. Mathem.), e-mail: puchkov@magnetite.ru, D.N. Diev, Deputy Head of Laboratory, e-mail: dndiev@gmail.com, National Research Centre «Kurchatov Institute», 123182, Moscow, Russia, 1) Limited Liability Company «MAGNЕTITE Ltd», 121205, Moscow, Russia. Corresponding author: Е.Ya. Tagunov, e-mail: tagunov@magnetite.ru.

REFERENCES:

1.        Karmazin V. V., Karmazin V. I. Magnitnye metody obogashcheniya [Magnetic concentration], Moscow, MGGU, 2005, 669 p.

 

2.        Svoboda Jan. Magnetic Techniques for the Treatment of Materials. Dordrecht, Boston: Kluwer Academic Publishers, 2004. 656 p.

 

3.        Kwon H. W., Kim J. J., Ha D. W., Choi J. H., Young-Hun Kim. Superconducting magnetic separation of ground steel slag powder for recovery of resources. Progress in Superconductivity and Cryogenics, March 2017, Vol. 19, No.1, pp. 22—25. DOI:10.9714/psac.2017.19.1.022/

 

4.        Zhu Zian, Wang Meifen, Ning Feipeng, Yang Huan, Li Peiyong, Zhang Yiting, Wang Zhaolian, Zhang Guoqing, Hou Zhilong, Liu Zhongxiu, Dai Zhong Recent development of high gradient superconducting magnetic separator for kaolin in China. Progress in Superconductivity and Cryogenics, March 2017, Vol. 19, No. 1. pp. 5—8. DOI: 10.9714/psac.2017.19.1.005.

 

5.        Saori Shibatani, Motohiro Nakanishi, Nobumi Mizuno, Fumihito Mishima, Yoko Akiyama, Hidehiko Okada, Noriyuki Hirota, Hideki Matsuura, Tatsumi Maeda, Naoya Shigemoto, Shigehiro Nishijima Development of superconducting high gradient magnetic separation system for scale removal from feed-water in thermal power plant. Progress in Superconductivity and Cryogenics, March, 2016, Vol. 18, No.1, pp. 19—22. DOI: 10.9714/psac.2016.18.1.019.

 

6.        Li Y., Chen H., Wang J., Xu F., Zhang W. Research on red mud treatment by a circulating superconducting magnetic separator. Environmental Technology, 2014, Vol. 35, No.10, pp. 1243— 1249. DOI: 10.1080/09593330.2013.865763.

 

7.        He S., Yang C., Li S., Zhang C. Enrichment of valuable elements from vanadium slag using superconducting HGMS technology. Progress in Superconductivity and Cryogenics, 2017, Vol. 19, No 1, pp. 17—21. DOI: 10.9714/psac.2017.19.1.017.

 

8.        Diev D. N., Lepehin V. M., Makarenko M. N., Polyakov A. V., Shcherbakov V. I., Shutova D. I., Surin M. I. ReBCO split coil magnet for high gradient magnetic separation: 27th International Cryogenic Engineering Conference. International Cryogenic Materials Conference 2018 (Oxford, England, 3—7th September 2018). Proceedings of the 27th ICEC&ICMC Conferenсe, Materials Science and Engineering 502 (2019) 012105. DOI: 10.1088/1757—899X/502/1/012105.

 

9.        Diev D. N., Lepehi V. М. N., Makarenko M. N., Polyakov A. V., Shcherbakov V. I., Shutova D. I., Surin M. I., Tagunov E. Ya. HTC high gradient magnetic separator prototype. Progress in Superconductivity and Cryogenics. Journal of the Korea Institute of Applied Superconductivity and Cryogenics, December 2018, Vol.20, No.4, pp.1—5. DOI: 10.1088/1757—899X/502/1/012105.

 

10.     Azbel' YU. I., Dmitriev S. V., L'vov V. V., Mezenin A. O. High-gradient magnetic separation of rougher ilmenite concentrates. Obogashchenie rud. 2014, no 5, pp. 19—21. [In Russ].

 

11.     Aleksandrova T. N., Prokhorov K. V., L'vov V. V. Extraction of magnetic fraction from coal combustion rejects by high-gradient magnetic separation. Gornyy zhurnal. 2015, no 12, pp. 4—8. [In Russ].

 

12.     Filippov L. O., Filippova I. V., Severov V. V. New technology of hematite concentration from current tailings of ferruginous quartzite. Metallurg. 2010, no 5, pp. 30—33. [In Russ].

 

13.     Karmazin V. V., Pak S. G., Maslov D. S. Magnetic concentration of oxidized quartzite from the Mikhailov ore deposit. Gornyy informatsionno-analiticheskiy byulleten’. 2012, no 12, pp. 212—219. [In Russ].

 

14.     L'vov V. V., Kuskov V. B. Processability of the Bakchar iron ore by high-intensity magnetic separation. Obogashchenie rud. 2015, no 1, pp. 26—30. [In Russ].

 

15.     Tagunov E. Ya., Tagunov P. E., Izmalkov V. A., Puchkov V. A. New types of collecting elements for high-gradient constant magnet separators. XX Mezhdunarodnaya konferentsiya po postoyannym magnitam (Suzdal, September 21—25 2015), Moscow, 2015, pp. 164—165.

 

16.     Tagunov P. E. Sozdanie vysokogradientnykh magnitnykh separatorov na postoyannykh magnitakh dlya izvlecheniya izmel'chennykh slabomagnitnykh mineralov [Engineering of highgradient constant magnet separators for extraction of milled weakly magnetic minerals], Candidate’s thesis, Moscow, MGGU, 2012, 125 p.

Subscribe for our dispatch