The study was aimed to select an efficient briquetting mode for iron-bearing metallurgical waste. The laboratory tests determined the optimal composition of batch and the optimal binder for low-temperature pressing with minimum process stages. The tested metallurgical waste was blast furnace dust, furnace slag, mill scale and gas cleaning dust. The binders in the briquetting tests were lime powder, liquid glass, lignosulphonate, furnace slag, silicomanganese manufacture slag, binder SB and coal tar. The studies have allowed refinement of the testing technique for briquetting technologies and the briquette strength. From among the examined binders, we select binder SB (refinery waste product). Binder SB enables briquetting finely dispersion materials with high content of coke fines (to 18% of carbon content) as this binder is efficient with carbon-bearing materials. According to the tests, it is possible to manufacture briquettes with crushing strength of 100–130 kg/cmfrom finely dispersion iron-bearing waste with binder SB at its consumption of 10%. The high-temperature tests show that these briquettes keep their shape after annealing at 1240 °С at metallization of 68.7–91.2% and iron recovery of 74–87.6%.

For citation: Korchevskii A. N., Zviagintseva N. A. Experimental study of briquetting technology for iron-bearing metallurgical waste treatment. MIAB. Mining Inf. Anal. Bull. 2019;(9):122-130. [In Russ]. DOI: 10.25018/0236-1493-2019-09-0-122-130.


Briquette, iron-bearing waste, binder, briquetting, thermal treatment, pressing, analysis.

Issue number: 9
Year: 2019
ISBN: 0236-1493
UDK: 622.788.32
DOI: 10.25018/0236-1493-2019-09-0-122-130
Authors: Korchevskii A. N., Zviagintseva N. A.

About authors: A.N. Korchevskii, Cand. Sci. (Eng.), Assistant Professor, Head of Chair, N.A. Zviagintseva, Senior Researcher, Donetsk National Technical University, 83000, Donetsk. Corresponding author: N.A. Zviagintseva, e-mail: zviagintseva@donntu.org.


1.        Gonik I. L. Liamkin V. P., Novitskii N. А. Features of use of briquetted iron bearing wastes.

Mettalurg. 2011, No 5, pp. 25—27. [In Russ].

2.        Belkin A. S. at alias. Use of iron-and-coke briquettes on cement binding in the domain melting. Mettalurg. 2003, No 4, pp. 39—41. [In Russ].

3.        Nockov V. A. About industrial waste preparation for utilization by briquetting. Vestnik Ukrainskogo Doma ekonomicheskikh i nauchno-tekhicheskih znanii. 1999, No 4, pp. 54—56. [In Russ].

4.        Anyashiki T., Fukada K., Fujimoto H. Development of Carbon Iron Composite Process. JFE GIHO, 2008, No 22, pp. 20—24.

5.        Bizhanov A.M., Kurunov I.F., Dalmia Y., Mishra B., Mishra S. Blast Furnace Operation with 100% Extruded Briquettes Charge. ISIJ International, 2015, Vol. 55, pp. 175—182.

6.        Тrushkо V. L., Dashkо R. E., Kuskov V. B., Kornev А. V., Кliamko А. С. Preparation of iron ore for metallurgical processing. Zapiski Gornogo institute. 2011, No 194, pp. 120—123. [In Russ].

7.        Fedoseev S. N., Dmitrieva А. V. Pererabotka zhelezosogerzhashchikh otkhodov metodom briketirovaniia [Processing of iron-containing waste by briquetting method], Aktualnye problemy sovremennogo mashynostroeniia: sbornik trudov mezhdunarodnoi nauchno-prakticheskoi konferentsii. Tomsk, TPU, 2014, pp. 458—460. [In Russ].

8.        Narita C. Y., Mourao M. B., Takano C. Development of composite briquettes of iron ore and coal hardened by heat treatment. Ironmaking & Steelmaking, 2015, Vol. 42, No 7, pp. 548—552.

9.        Elishevich A. T. Briketirovanie poleznykh iskopaemykh [The minerals briquetting], Moscow, Nedra, 1989, 200 p. [In Russ].

10.     Umanskii A. M. Pressovanie poroshkovykh materialov [The sintered minerals pressing], Moscow, Metallurgy, 1981, 81 p. [In Russ].

11.     Оzhоgin V. V. Osnovy teorii i tekhnologii briketirovaniia izmelchennogo metallurgicheskogo syria [Theory and technologies of metallurgical raw material briquetting], Mariupol, PGTU, 2010, 442 p. [In Russ].

12.     Somerville M. A. The Strength and Density of Green and Reduced Briquettes Made with Iron Ore and Charcoal. Journal of Sustainable Metallurgy, 2016, No 2, pp. 228—238.

13.     Wen Y., Tichang S., Zhenzhen L., Jue K., Chengyan X. Effects of Particle Sizes of Iron Ore and Coal on the Strength and Reduction of High Phosphorus Oolitic Hematite-coal Composite Briquettes. ISIJ International, 2014, Vol. 54, No 1, pp. 56—62.

14.     Han H., Duan D., Yuan P. Binders and Bonding Mechanism for RHF Briquette Made from Blast Furnace Dust. ISIJ International, 2014, Vol. 54, No 8, pp. 1781—1789.

15.     Nazimko Е. I., Коrchevskii A. N., Serafimova L. I., Zviagintseva N. А. [The study of technological modes of production of composite coal briquettes containing waste of plant origin], Aktualnye problemy bioraznoobraziia i prirodopolzovaniia. Materialy II Natsionalnoi nauchno-prakticheskoi konferentsii. Kerch, KSMTU, 2019, pp. 373—379. [In Russ].

16.     Коrchevskii A. N., Surzhenko А. N., Sadovoi М. І. The testing of efficient parameters for many-component briquettes production, Vesti Donetskogo gornogo instituta. 2014, No 2(35), pp. 9—15. [In Ukr].

17.     Sergeev P. V., Коrchevskii А. N., Surzhenko А. Н., Rakhmanov S. О. The testing of efficient parameters for composite brick fuel production with use of solid and liquid binder, Vesti Donetskogo gornogo instituta. 2013, No 2(33), pp. 128—134. [In Russ].

18.     Ryvnen I. IU. The briquetting of fine and dispersed materials with binders. Coke and chemistry. 2003, No 10. pp. 336—342. [In Russ].

Subscribe for our dispatch